English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 760-772 DOI: 10.7536/PC181004 前一篇   后一篇

• •

农林废弃生物质吸附材料在水污染治理中的应用

易锦馨1,2, 霍志鹏1,**(), AbdullahM.Asiri3, KhalidA.Alamry3, 李家星1,3,**()   

  1. 1. 中国科学院合肥物质科学研究院等离子体物理研究所 中国科学院光伏与节能材料重点实验室 合肥 230031
    2. 中国科学技术大学 合肥 230026
    3. 阿卜杜勒阿齐兹国王大学自然科学学院化学系 吉达 21589
  • 收稿日期:2018-10-08 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 霍志鹏, 李家星
  • 基金资助:
    国家高技术研究发展计划(21677146); 国家自然科学基金项目(U1607102); 安徽省自然科学基金项目(1708085MB31)

Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment

Jinxin Yi1,2, Zhipeng Huo1,**(), Abdullah M. Asiri3, Khalid A. Alamry3, Jiaxing Li1,3,**()   

  1. 1. Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
    2. University of Science and Technology of China, Hefei 230026, China
    3. Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Received:2018-10-08 Online:2019-05-15 Published:2019-03-21
  • Contact: Zhipeng Huo, Jiaxing Li
  • About author:
    ** E-mail: (Zhipeng Huo);
    (Jiaxing Li)
  • Supported by:
    National High Technology Research and Development Program of China(21677146); National Natural Science Foundation of China(U1607102); Anhui Provincial Natural Science Foundation(1708085MB31)

环境污染问题已经成为人类社会可持续发展的巨大挑战之一,化工、冶炼及核燃料循环过程等排放的废水中含大量重金属离子、有机物及放射性核素等,若未经处理即排放会给环境带来了极大的危害。吸附法的效率高、操作简单、低成本且无副产物、可循环利用及无二次污染等优点使其成为废水处理的重要方法之一。由于农林废弃生物质成本低、来源丰富、绿色环保且可再生,以其为原料制备的吸附材料被广泛研究。本文主要针对以农林废弃生物质为原料制备的生物炭、纤维素及木质素为研究对象, 综述了生物炭的制备及改性方法、天然纤维素及木质素的改性方法及其在水污染治理中的应用现状。从原材料、制备工艺、改性方法等方面总结分析了吸附材料的性能对水中污染物吸附的影响,提出了生物质基吸附材料在水污染治理应用中所存在的问题,并展望了未来的发展方向。

Environmental pollution has become one of the great challenges to the sustainable development of human society. Wastewater discharged from chemical, smelting and nuclear fuel cycle processes contain a lot of heavy metal ions, organic matter, and radionuclides. If discharged without treatment, it will bring great harm to the environment. The adsorption method for wastewater treatment has many advantages such as high efficiency, simple operation, no by-products, recyclability, and no secondary pollution, thus making it one of the significant methods for wastewater treatment. Due to the low cost, abundance in raw materials, and renewability of agroforestry waste biomass, the adsorption materials prepared on the basis of it are widely studied. In this paper, the research focuses on biochar, cellulose, and lignin, which are prepared from agroforestry waste biomass as raw materials, the preparation and modification methods of biochar, modification methods of natural cellulose, methods of modifying lignin, and their application in wastewater treatment are reviewed. The effects of adsorption properties on the adsorption of pollutants in water are discussed from the aspects of raw materials, preparation process, and modification methods. The problems of pollutant adsorption by biomass-based adsorption materials are pointed out and an outlook on their future research direction is made.

()
图1 农林废弃生物质吸附材料的制备及改性方法
Fig. 1 Preparation and modification methods of agroforestry waste biomass based adsorbing materials
表1 热化学过程的典型操作条件和煤焦产量[33]
Table 1 Typical operating conditions for thermochemical processes and char production[33]
图2 CDPC及CDPCO的热重分析(A1); CDPC及CDPCO的TOTH(B1);CDPC及CDPCO吸附MB前后的比表面积(C1); CDPC及CDPCO吸附MB前后的孔径分布(D1)。CDPC、CDPCO及棉花对有机污染物的吸附能力比较(A2);C0=200 mg · L-1, m/V=0.1 g · L-1,T=298 K条件下棉花(B2)及CDPCO(C2)对MB的吸附[66]
Fig. 2 TGA of CDPC and CDPCO(A1); TOTH of CDPC and CDPCO(B1); BET specific surface areas of CDPC and CDPCO before and after MB adsorption(C1); size distributions of CDPC and CDPCO before and after MB adsorption(D1).Comparisons of(A2) the adsorption capacities toward organic pollutants of CDPC, CDPCO and cotton and the adsorption of MB on cotton(B2) and CDPCO(C2). C0=200 mg · L-1, m/V=0.1 g · L-1, T=298K[66]
图3 纤维素基吸附剂的改性方法及其在水处理中的应用[96]
Fig. 3 Modification methods for cellulose-based adsorbents and their usage in water treatment[96]
图4 SESD-PAA 的合成及其对金属离子的吸附研究,(a)pH 值(25 ℃, C0=150 mg · L-1,吸附时间=30 min),(b)初始浓度(25 ℃, Fe(Ⅲ)的pH=3.5,其他离子的pH=6,吸附时间=30 min),(c)吸附时间(25 ℃, C0=150 mg · L-1,Fe(Ⅲ)的pH=3.5,其他离子的pH=6)对Zn(Ⅱ)、Fe(Ⅲ)、Cu(Ⅱ)及Cr(Ⅲ)吸附的影响[111]
Fig. 4 Synthesis and metal ions adsorption scheme of SESD-PAA. Effect of(a) pH value(25 ℃, C0=150 mg · L-1, contact time=30 min),(b) initial concentration(25 ℃, pH=3.5 for Fe(Ⅲ) and 6 for other ions, contact time=30 min) and(c) contact time(25 ℃, C0=150 mg·L-1, pH=3.5 for Fe(Ⅲ) and 6 for other ions) on Zn(Ⅱ), Fe(Ⅲ), Cu(Ⅱ), and Cr(Ⅲ) ion adsorption[111]
图5 纤维素基生物吸附剂的合成示意图;研究(a)生物吸附剂剂量,(b)吸附时间,(c)溶液pH值及(d)温度对AB93和MB去除效率的影响[112]
Fig. 5 Schematic drawing of synthesis of cellulose-based bioadsorbents. Effects of(a) bioadsorbent dosage,(b) contact time,(c) solution pH, and(d) temperature on the dye removal efficiencies of AB93 and MB using the cellulose-based bioadsorbents[112]
图6 木质素基吸附剂的改性方法及其在水处理中的应用[127]
Fig. 6 Modification methods for lignin-based adsorbents and their usage in water treatment[127]
[1]
Fu F, Wang Q . Journal of Environmental Management, 2011,92:407. https://www.ncbi.nlm.nih.gov/pubmed/21138785

doi: 10.1016/j.jenvman.2010.11.011     URL     pmid: 21138785
[2]
Rudnicki P, Hubicki Z, Kołodyńska D . Chemical Engineering Journal, 2014,252:362. bcaa36ab-2b48-4858-8e22-1ab5310d582dhttp://dx.doi.org/10.1016/j.cej.2014.04.035

doi: 10.1016/j.cej.2014.04.035     URL    
[3]
Kurniawan T A, Chan G Y S, Lo W H, Babel S . Chemical Engineering Journal, 2006,118:83. https://linkinghub.elsevier.com/retrieve/pii/S1385894706000362

doi: 10.1016/j.cej.2006.01.015     URL    
[4]
Meng N C, Bo J, Chow C W K, Saint C . Water Research, 2010,44:2997. https://www.ncbi.nlm.nih.gov/pubmed/20378145

doi: 10.1016/j.watres.2010.02.039     URL     pmid: 20378145
[5]
Lee K M, Lai C W, Ngai K S, Juan J C . Water Research, 2016,88:428. https://www.ncbi.nlm.nih.gov/pubmed/26519627

doi: 10.1016/j.watres.2015.09.045     URL     pmid: 26519627
[6]
Zhong Y J, You S J, Wang X H, Zhou X, Gan Y, Ren N Q . Chemical Engineering Journal, 2013,226:217. https://linkinghub.elsevier.com/retrieve/pii/S1385894713004713

doi: 10.1016/j.cej.2013.03.132     URL    
[7]
Thong Z, Han G, Cui Y, Gao J, Chung T S, Chan S Y, Wei S . Environmental Science & Technology, 2014,48:13880. https://www.ncbi.nlm.nih.gov/pubmed/25369240

doi: 10.1021/es5031239     URL     pmid: 25369240
[8]
Ali I, Gupta V K . Nature Protocols, 2006,1:2661. https://www.ncbi.nlm.nih.gov/pubmed/17406522

doi: 10.1038/nprot.2006.370     URL     pmid: 17406522
[9]
Andjelkovic I, Tran D N, Kabiri S, Azari S, Markovic M, Losic D . ACS Appl Mater Interfaces, 2015,7:9758. https://www.ncbi.nlm.nih.gov/pubmed/25871444

doi: 10.1021/acsami.5b01624     URL     pmid: 25871444
[10]
庞宏伟(Pang H W), 王祥学(Wang X X), 姚文(Yao W), 于淑君(Yu S J), 王祥科(Wang X K) . 中国科学:化学 (Scientia Sinica Chimica), 2018,48(1):58.
[11]
Fan Y, Ma W, Han D, Gan S, Dong X, Niu L . Adv. Mater., 2015,27:3767. https://www.ncbi.nlm.nih.gov/pubmed/25994835

doi: 10.1002/adma.201500391     URL     pmid: 25994835
[12]
杨姗也(Yang S Y), 王祥学(Wang X X), 陈中山(Chen Z S), 李倩(Li Q), 韦犇犇(Wei B B), 王祥科(Wang X K) . 化学进展 (Progress in Chemistry), 2018,30(2/3):225.
[13]
Xu M, Han X, Wang T, Li S, Hua D . Journal of Materials Chemistry A, 2018,6:13894.
[14]
Annadurai G, Juang R S, Lee D J . Journal of Hazardous Materials, 2002,92:263. https://www.ncbi.nlm.nih.gov/pubmed/12031611

doi: 10.1016/s0304-3894(02)00017-1     URL     pmid: 12031611
[15]
Cai T, Li H, Yang R, Wang Y, Li R, Yang H, Li A, Cheng R . Cellulose, 2015,22:1439.
[16]
Hamid S B A, Chowdhury Z Z, Zain S M . Materials, 2014,7:2815. https://www.ncbi.nlm.nih.gov/pubmed/28788595

doi: 10.3390/ma7042815     URL     pmid: 28788595
[17]
Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J . Bioresource Technology, 2014,169:622. https://www.ncbi.nlm.nih.gov/pubmed/25103038

doi: 10.1016/j.biortech.2014.06.103     URL     pmid: 25103038
[18]
Qian L, Chen B . Environmental Science & Technology, 2013,47:8759. https://www.ncbi.nlm.nih.gov/pubmed/23826729

doi: 10.1021/es401756h     URL     pmid: 23826729
[19]
Xu X, Cao X, Zhao L . Chemosphere, 2013,92:955. https://www.ncbi.nlm.nih.gov/pubmed/23591132

doi: 10.1016/j.chemosphere.2013.03.009     URL     pmid: 23591132
[20]
Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman A R, Cao X, Yang L, Xue Y, Li H . Journal of Hazardous Materials, 2012,209/210:408. https://www.ncbi.nlm.nih.gov/pubmed/22321858

doi: 10.1016/j.jhazmat.2012.01.046     URL     pmid: 22321858
[21]
Chen W, Parette R, Zou J, Cannon F S, Dempsey B A . Water Research, 2007,41:1851. https://www.ncbi.nlm.nih.gov/pubmed/17367839

doi: 10.1016/j.watres.2007.01.052     URL     pmid: 17367839
[22]
Faria P C, Orfão J J, Pereira M F . Water Research, 2004,38:2043. https://www.ncbi.nlm.nih.gov/pubmed/15087185

doi: 10.1016/j.watres.2004.01.034     URL     pmid: 15087185
[23]
Lehmann J . Nature, 2007,447:143. https://www.ncbi.nlm.nih.gov/pubmed/17495905

doi: 10.1038/447143a     URL     pmid: 17495905
[24]
Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S . Environmental Science & Technology, 2017,51:3911. https://www.ncbi.nlm.nih.gov/pubmed/28271891

doi: 10.1021/acs.est.6b06305     URL     pmid: 28271891
[25]
Ahmad M, Lee S S, Dou X, Mohan D, Sung J K, Yang J E, Ok Y S . Bioresource Technology, 2012,118:536. https://www.ncbi.nlm.nih.gov/pubmed/22721877

doi: 10.1016/j.biortech.2012.05.042     URL     pmid: 22721877
[26]
Gao X, Zhang H, Chen K, Zhou J, Liu Q . Cellulose, 2018,25:2531.
[27]
Özbaş Z, Şahin C P, Esen E, Gürdağ G, Kaşgöz H . Journal of Environmental Chemical Engineering, 2016,4:1948. https://linkinghub.elsevier.com/retrieve/pii/S2213343716300859

doi: 10.1016/j.jece.2016.03.006     URL    
[28]
Yamaki S B, Barros D S, Garcia C M, Socoloski P, OliveiraO N, Atvars T D . Langmuir, 2005,21:5414. https://www.ncbi.nlm.nih.gov/pubmed/15924470

doi: 10.1021/la046842j     URL     pmid: 15924470
[29]
Bhatnagar A, Sillanpaa M, Witek-Krowiak A . Chemical Engineering Journal, 2015,270:244.
[30]
Kim Y N, Choi M K . Environmental Science & Technology, 2014,48:7503. https://www.ncbi.nlm.nih.gov/pubmed/24894447

doi: 10.1021/es501003m     URL     pmid: 24894447
[31]
Meng X Y, Vaccari D A, Zhang J F, Fiume A, Meny X G . Environmental Science & Technology, 2014,48:1541. https://www.ncbi.nlm.nih.gov/pubmed/24410613

doi: 10.1021/es4043534     URL     pmid: 24410613
[32]
Ling C, Li X, Zhang Z, Liu F, Deng Y, Zhang X, Li A, He L, Xing B . Environmental Science & Technology, 2016,50:10015. https://www.ncbi.nlm.nih.gov/pubmed/27574832

doi: 10.1021/acs.est.6b02846     URL     pmid: 27574832
[33]
Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S . Chemosphere, 2014,99:19. https://www.ncbi.nlm.nih.gov/pubmed/24289982

doi: 10.1016/j.chemosphere.2013.10.071     URL     pmid: 24289982
[34]
Lian F, Xing B . Environmental Science & Technology, 2017,51:13517. https://www.ncbi.nlm.nih.gov/pubmed/29116778

doi: 10.1021/acs.est.7b02528     URL     pmid: 29116778
[35]
Chen Z, Chen B, Chiou C T . Environmental Science & Technology, 2016,46:11104. https://www.ncbi.nlm.nih.gov/pubmed/22970831

doi: 10.1021/es302345e     URL     pmid: 22970831
[36]
Tong X J, Li J Y, Yuan J H, Xu R K . Chemical Engineering Journal, 2011,172:828.
[37]
Xiao X, Chen B, Chen Z, Zhu L, Schnoor J L . Environmental Science & Technology, 2018,52:5027. https://pubs.acs.org/doi/10.1021/acs.est.7b06487

doi: 10.1021/acs.est.7b06487     URL    
[38]
Chen Z, Chen B, Zhou D, Chen W . Environmental Science & Technology, 2012,46:12476. https://www.ncbi.nlm.nih.gov/pubmed/23121559

doi: 10.1021/es303351e     URL     pmid: 23121559
[39]
Kim W K, Shim T, Kim Y S, Hyun S, Ryu C . Bioresource Technology, 2013,138:266. 5eac4a11-b02e-4ef5-b8a4-c349806b6193http://dx.doi.org/10.1016/j.biortech.2013.03.186

doi: 10.1016/j.biortech.2013.03.186     URL    
[40]
Kumar S, Loganathan V A, Gupta R B, Barnett M O . Journal of Environmental Management, 2011,92:2504. 74cc8c6f-3319-47dc-8076-8b6dd0f0e503http://www.sciencedirect.com/science/article/pii/S030147971100168X

doi: 10.1016/j.jenvman.2011.05.013     URL    
[41]
Pintor A M, Ferreira C I, Pereira J C, Correia P, Silva S P, Vilar V J, Botelho C M, Boaventura R A . Water Research, 2012,46:3152. 748db84a-3816-4424-9f27-4050287a3e4ehttp://dx.doi.org/10.1016/j.watres.2012.03.048

doi: 10.1016/j.watres.2012.03.048     URL    
[42]
Lee J W, Kidder M, Evans B R, Paik S, Iii A C B, Garten C T, Brown R C . Environmental Science & Technology, 2010,44:7970. https://www.ncbi.nlm.nih.gov/pubmed/20836548

doi: 10.1021/es101337x     URL     pmid: 20836548
[43]
Yuan J H, Xu R K, Zhang H . Bioresource Technology, 2011,102:3488. https://www.ncbi.nlm.nih.gov/pubmed/21112777

doi: 10.1016/j.biortech.2010.11.018     URL     pmid: 21112777
[44]
Harvey O R, Herbert B E, Rhue R D, Kuo L J . Environmental Science & Technology, 2011,45:5550. https://www.ncbi.nlm.nih.gov/pubmed/21630654

doi: 10.1021/es104401h     URL     pmid: 21630654
[45]
Malghani S, Gleixner G, Trumbore S E . Soil Biology & Biochemistry, 2013,62:137.
[46]
Sabio E, Álvarez-Murillo A, Román S, Ledesma B . Waste Management, 2015,47:122. https://www.ncbi.nlm.nih.gov/pubmed/25981156

doi: 10.1016/j.wasman.2015.04.016     URL     pmid: 25981156
[47]
Huff M D, Kumar S, Lee J W . Journal of Environmental Management, 2014,146:303. https://www.ncbi.nlm.nih.gov/pubmed/25190598

doi: 10.1016/j.jenvman.2014.07.016     URL     pmid: 25190598
[48]
Liu Z G, Zhang F S . Journal of Hazardous Materials, 2009,167:933. https://www.ncbi.nlm.nih.gov/pubmed/19261383

doi: 10.1016/j.jhazmat.2009.01.085     URL     pmid: 19261383
[49]
Elaigwu S E, Rocher V, Kyriakou G, Greenway G M . Journal of Industrial & Engineering Chemistry, 2014,20:3467.
[50]
Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J . Bioresource Technology, 2011,102:9255. https://www.ncbi.nlm.nih.gov/pubmed/21802284

doi: 10.1016/j.biortech.2011.06.099     URL     pmid: 21802284
[51]
Coronella C J, Lynam J G, Reza M T, Uddin M H . Energy Fuels, 2011,25:1802.
[52]
Regmi P, Moscoso J L G, Kumar S, Cao X, Mao J, Schafran G . Journal of Environmental Management, 2012,109:61. https://www.ncbi.nlm.nih.gov/pubmed/22687632

doi: 10.1016/j.jenvman.2012.04.047     URL     pmid: 22687632
[53]
Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H . Energy, 2013,58:376.
[54]
Parshetti G K, Hoekman S K, Balasubramanian R . Bioresour. Technol., 2013,135:683. https://www.ncbi.nlm.nih.gov/pubmed/23127830

doi: 10.1016/j.biortech.2012.09.042     URL     pmid: 23127830
[55]
Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J . ACS Sustainable Chemistry & Engineering, 2013,1:1092.
[56]
Zhang Z B, Cao X H, Liang P, Liu Y H . Journal of Radioanalytical & Nuclear Chemistry, 2013,295:1201.
[57]
Xiao L P, Shi Z J, Xu F, Sun R C . Bioresource Technology, 2012,118:619. https://www.ncbi.nlm.nih.gov/pubmed/22698445

doi: 10.1016/j.biortech.2012.05.060     URL     pmid: 22698445
[58]
吴艳姣(Wu Y J), 李伟(Li W), 吴琼(Wu Q), 刘守新(Liu S X) . 化学进展 (Progress in Chemistry), 2016,28(1):121.
[59]
Kumar S, Kothari U, Kong L Z, Lee Y Y, Gupta R B . Biomass Bioenerg., 2011,35:956.
[60]
Sevilla M, Fuertes A B . Carbon, 2009,47:2281. https://www.ncbi.nlm.nih.gov/pubmed/19524009

doi: 10.1016/j.fct.2009.06.015     URL     pmid: 19524009
[61]
Bai M, Wilske B, Bueqqer F, Esperschütz J, Kammann C I, Eckhardt C, Koestler M, Keraft P, Bach M, Frede H G, Breuer L . Plant & Soil, 2013,372:375.
[62]
Hadjittofi L, Prodromou M, Pashalidis I . Bioresource Technology, 2014,159:460. https://www.ncbi.nlm.nih.gov/pubmed/24718356

doi: 10.1016/j.biortech.2014.03.073     URL     pmid: 24718356
[63]
Iriarte-Velasco U, Sierra I, Zudaire L, Ayastuy J L . Food & Bioproducts Processing, 2016,98:341.
[64]
Petrović J T, Stojanović M D, Milojković J V, Petrović M S, Šoštarić T D, Laušević M D, Mihajlović M L . Journal of Environmental Management, 2016,182:292. https://www.ncbi.nlm.nih.gov/pubmed/27494605

doi: 10.1016/j.jenvman.2016.07.081     URL     pmid: 27494605
[65]
Goswami R, Shim J, Deka S, Kumari D, Kataki R, Kumar M . Ecological Engineering, 2016,97:444.
[66]
Chen H, Wang X, Li J, Wang X . Journal of Materials Chemistry A, 2015,3:6073.
[67]
Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, Song Z . Molecules, 2017,22:173.
[68]
Michálekovárichveisová B, Frišták V, Pipíška M $breve{D}$uriška L Moreno-Jimenez E Soja G . Environmental Science & Pollution Research, 2017,24:463. https://www.ncbi.nlm.nih.gov/pubmed/27730505

doi: 10.1007/s11356-016-7820-9     URL     pmid: 27730505
[69]
Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R . Dalton Transactions, 2013,42:5682. https://www.ncbi.nlm.nih.gov/pubmed/23443993

doi: 10.1039/c3dt33097d     URL     pmid: 23443993
[70]
Zhao G X, Li J X, Ren X M, Chen C L, Wang X K . Environmental Science & Technology, 2011,45:10454. https://www.ncbi.nlm.nih.gov/pubmed/22070750

doi: 10.1021/es203439v     URL     pmid: 22070750
[71]
Abdul G, Zhu X, Chen B . Chemical Engineering Journal, 2017,319:9.
[72]
Tang J, Lv H, Gong Y, Huang Y . Bioresource Technology, 2015,196:355. https://www.ncbi.nlm.nih.gov/pubmed/26255599

doi: 10.1016/j.biortech.2015.07.047     URL     pmid: 26255599
[73]
Shang M, Liu Y, Liu S, Zeng G, Tan X, Jiang L, Huang X, Ding Y, Guo Y, Wang S . RSC Adv., 2016,6:85202.
[74]
Inyang M, Gao B, Zimmerman A, Zhang M, Chen H . Chemical Engineering Journal, 2014,236:39.
[75]
Inyang M, Gao B, Zimmerman A, Zhou Y, Cao X . Environmental Science & Pollution Research, 2015,22:1868. https://www.ncbi.nlm.nih.gov/pubmed/25212810

doi: 10.1007/s11356-014-2740-z     URL     pmid: 25212810
[76]
Ma Y, Liu W J, Zhang N, Li Y S, Jiang H, Sheng G P . Bioresource Technology, 2014,169:403. https://www.ncbi.nlm.nih.gov/pubmed/25069094

doi: 10.1016/j.biortech.2014.07.014     URL     pmid: 25069094
[77]
Zhou Y, Gao B, Zimmerman A R, Chen H, Zhang M, Cao X . Bioresource Technology, 2014,152:538. https://www.ncbi.nlm.nih.gov/pubmed/24300585

doi: 10.1016/j.biortech.2013.11.021     URL     pmid: 24300585
[78]
Yang G X, Jiang H . Water Research, 2014,48:396. https://www.ncbi.nlm.nih.gov/pubmed/24183556

doi: 10.1016/j.watres.2013.09.050     URL     pmid: 24183556
[79]
Zhou Y, Gao B, Zimmerman A R, Fang J, Sun Y, Cao X . Chemical Engineering Journal, 2013,231:512.
[80]
Zhang M, Liu Y, Li T, Xu W, Zheng B, Tan X, Wang H, Guo Y, Guo F, Wang S . RSC Adv., 2015,5:46955.
[81]
Menon P M, Selvakumar R, Kumar P S, Ramakrishna S . RSC Adv., 2017,7:42750.
[82]
Bhatnagar A, Sillanpää M, Witekkrowiak A . Chemical Engineering Journal, 2015,270:244.
[83]
Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew A P, Oksman K, Faria M, Thomas S, Pothan L A . Cellulose, 2015,22:1075.
[84]
Kalia S, Boufi S, Celli A, Kango S . Colloid & Polymer Science, 2014,292:5.
[85]
Khalil H P S A, Davoudpour Y, Islam M N, Mustapha A, Sudesh K, Dungani R, Jawaid M . Carbohydr. Polym., 2014,99:649. https://www.ncbi.nlm.nih.gov/pubmed/24274556

doi: 10.1016/j.carbpol.2013.08.069     URL     pmid: 24274556
[86]
杜海顺(Du H S), 刘超(Liu C), 张苗苗(Zhang M M), 孔庆山(Kong Q S), 李滨(Li B), 咸漠(Xian M) . 化学进展 (Progress in Chemistry), 2018,30(4):448.
[87]
Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K . Cellulose, 2011,18:775. http://link.springer.com/10.1007/s10570-011-9501-7

doi: 10.1007/s10570-011-9501-7     URL    
[88]
茹静(Ru J), 耿璧垚(Geng B Y), 童聪聪(Tong C C), 王海英(Wang H Y), 吴胜春(Wu S C), 刘宏治(Liu H Z) . 化学进展 (Progress in Chemistry), 2017,29(10):1228.
[89]
Faruk O, Bledzki A K, Fink H P, Sain M . Progress in Polymer Science, 2012,37:1552. 00ee3556-d869-4aab-94c2-3758d224e6cdhttp://dx.doi.org/10.1016/j.progpolymsci.2012.04.003

doi: 10.1016/j.progpolymsci.2012.04.003     URL    
[90]
O’Connell D W, Birkinshaw C, O’Dwyer T F . Bioresource Technology, 2008,99:6709. https://www.ncbi.nlm.nih.gov/pubmed/18334292

doi: 10.1016/j.biortech.2008.01.036     URL     pmid: 18334292
[91]
Gamze G, Gülten G, Saadet Ö . J. Appl. Polym. Sci., 2010,90:2034.
[92]
Liu X, Zhou Y, Nie W, Song L, Chen P . J. Mater. Sci., 2015,50:6113.
[93]
Liu L, Xie J P, Li Y J, Zhang Q, Yao J M . Cellulose, 2016,23:723.
[94]
Song K, Xu H, Xu L, Xie K, Yang Y . Bioresource Technology, 2017,232:252.
[95]
Mohammed N, Grishkewich N, Berry R, Tam K . Cellulose, 2015,22:3725.
[96]
Hokkanen S, Bhatnagar A, Sillanpää M . Water Research, 2016,91:156. https://www.ncbi.nlm.nih.gov/pubmed/26789698

doi: 10.1016/j.watres.2016.01.008     URL     pmid: 26789698
[97]
Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M . Cellulose, 2014,21:1471.
[98]
Zhou Y, Hu X, Zhang Q, Ma T . J. Mater. Sci., 2012,47:5019.
[99]
Batmaz R, Mohammed N, Zaman M, Minhas G, Berry R M, Tam K C . Cellulose, 2014,21:1655.
[100]
Memon S Q, Memon N, Shah S W, Khuhawar M Y, Bhanger M I . Journal of Hazardous Materials, 2007,139:116. https://www.ncbi.nlm.nih.gov/pubmed/16844287

doi: 10.1016/j.jhazmat.2006.06.013     URL     pmid: 16844287
[101]
Jorgetto A O, Silva R I V, Longo M M, Saeki M J, Padilha P M, Martines M A U, Rocha B P, Castro G R . Applied Surface Science, 2013,264:368.
[102]
Hokkanen S, Repo E, Sillanpää M . Chemical Engineering Journal, 2013,223:40.
[103]
Henriksson M, Berglund L A . Journal of Applied Polymer Science, 2010,106:2817.
[104]
Peng T, Cheng Y L . Polymer, 2001,42:2091.
[105]
Yamada K, Nagano R, Hirata M . Journal of Applied Polymer Science, 2010,99:1895.
[106]
Hemvichian K, Chanthawong A, Suwanmala P . Radiation Physics & Chemistry, 2014,103:167.
[107]
Desmet G, Takács E, Wojnárovits L, Borsa J . Radiation Physics & Chemistry, 2011,80:1358.
[108]
Nasef M M, Hegazy E S A . Progress in Polymer Science, 2004,29:499.
[109]
Bhattacharya A, Misra B N . Progress in Polymer Science, 2004,29:767.
[110]
Wojnárovits L, Földváry C M, Takács E . Radiation Physics & Chemistry, 2010,79:848.
[111]
Zhang M, Song L H, Jiang H, Li S, Shao Y, Yang J, Li J . Journal of Materials Chemistry A, 2017,5:3434.
[112]
Liu L, Gao Z Y, Su X P, Chen X, Jiang L, Yao J M . ACS Sustainable Chemistry, 2015,3:432.
[113]
Anirudhan T S, Nima J, Divya P L . Applied Surface Science, 2013,279:441.
[114]
Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T . Journal of Chemical & Engineering Data, 2013,58:413.
[115]
Hajeeth T, Vijayalakshmi K, Gomathi T, Sudha P N . Int. J. Biol. Macromol., 2013,62:59. https://www.ncbi.nlm.nih.gov/pubmed/23994787

doi: 10.1016/j.ijbiomac.2013.08.029     URL     pmid: 23994787
[116]
Ramos S N D C, Xavier A L P, Teodoro F S, Gil L F, Gurgel L V A . Industrial Crops & Products, 2016,79:116.
[117]
Zhu H X, Cao X J, He Y C, Kong Q P, He P, Wang J . Carbohydrate Polymers, 2015,129:115. https://www.ncbi.nlm.nih.gov/pubmed/26050896

doi: 10.1016/j.carbpol.2015.04.049     URL     pmid: 26050896
[118]
Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M . Chemical Reviews, 2013,110:3552. https://www.ncbi.nlm.nih.gov/pubmed/20218547

doi: 10.1021/cr900354u     URL     pmid: 20218547
[119]
蒋叶涛(Jiang Y T), 宋晓强(Song X Q), 孙勇(Sun Y), 曾宪海(Zeng X H), 唐兴(Tong X), 林鹿(Lin L) . 化学进展 (Progress in Chemistry), 2017,29(10):1273.
[120]
Thakur V K, Thakur M K, Raghavan P, Kessler M R . ACS Sustainable Chemistry, 2014,2:1072.
[121]
Harmita H, Karthikeyan K, Pan X . Bioresour Technol, 2009,100:6183. https://www.ncbi.nlm.nih.gov/pubmed/19643604

doi: 10.1016/j.biortech.2009.06.093     URL     pmid: 19643604
[122]
Tian J, Ren S, Fang G, Ma Y, Ai Q . BioResources, 2014,9:1930.
[123]
Lü Q F, Luo J J, Lin T T, Zhang Y Z . ACS Sustainable Chemistry & Engineering, 2013,2:465.
[124]
Ge Y, Xiao D, Li Z, Cui X . Journal of Materials Chemistry A, 2015,3:7666.
[125]
Klapiszewski Ł, Siwińska-Stefańska K, Kołodyńska D . Chemical Engineering Journal, 2017,314:169.
[126]
Yao Q, Xie J, Liu J, Kang H, Liu Y . Journal of Polymer Research, 2014,21:465.
[127]
Ge Y, Li Z . ACS Sustainable Chemistry & Engineering, 2018,6:7192.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[9] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[13] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[14] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[15] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.