English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 738-751 DOI: 10.7536/PC180817 前一篇   后一篇

• •

湿法改性石墨烯在制备橡胶复合材料中的应用

耿奥博1, 钟强1, 梅长彤1, 王林洁1, 徐立杰2, 甘露1,**()   

  1. 1. 南京林业大学材料科学与工程学院 南京 210037
    2. 南京林业大学生物与环境学院 南京 210037
  • 收稿日期:2018-08-22 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 甘露
  • 基金资助:
    江苏省自然科学基金项目(BK20160938); 江苏省研究生科研与实践创新计划项目(KYCX18_0994)

Applications of Wet-Functionalized Graphene in Rubber Composites

Aobo Geng1, Qiang Zhong1, Changtong Mei1, Linjie Wang1, Lijie Xu2, Lu Gan1,**()   

  1. 1. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
    2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
  • Received:2018-08-22 Online:2019-05-15 Published:2019-03-21
  • Contact: Lu Gan
  • About author:
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20160938); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_0994)

橡胶由于其高弹性、良好的生物相容性、耐化学腐蚀及长期使用的稳定性等优点,在众多领域已有一百多年的应用历史。一般来说,在生胶硫化之前需要加入增强填料、润滑剂、偶联剂和促进剂等各类添加剂,以达到使用要求的性能。其中增强填料起到提高橡胶强度、提高橡胶耐磨耐热性、延长橡胶使用寿命的作用。相比于炭黑或者二氧化硅这些传统增强填料,新兴纳米材料石墨烯由于其优异的性能,只需极少量便可使橡胶的性能显著增强。然而,石墨烯片层之间的范德华力严重的阻碍了其在高分子机体内的分散,其在橡胶基体的分散性直接决定了石墨烯对于橡胶材料的增强效果。近年来,越来越多的研究开始关注通过在溶液中的湿法改性,包括物理或化学的方法来改性石墨烯,促进它与橡胶二者界面的相互作用,提高石墨烯在橡胶基体中的分散效果。本文总结了近几年湿法改性石墨烯在制备石墨烯/橡胶复合材料方面的研究进展。

Vulcanized rubber products have been applied in various fields for more than 100 years, due to their high elasticity, good biological compatibility, chemical resistance, long-time use stability, etc. Additives like reinforcing fill er, lubricant, coupling agent, and accelerating agent, are necessary to be mixed with the raw rubber to give the rubber certain properties. Specifically, the rein-forcing filler plays the role of enhancing the mechanical strength, abrasive and thermal resistance, as well as prolonging the service life of the rubber. Compared with the traditional reinforcing fillers like carbon black and fumed silica, the graphene, a newly emerging nanomaterial, can reinforce the rubber properties with very small incorporation amount, due to its superior properties. However, the strong van der Vaals force amongst graphene sheets seriously inhibits its dispersion in the rubber. Meanwhile, the dispersion state of the graphene in silicone rubber matrix directly influences the reinforcing effect of the graphene. In recent years, many researchers focus on the functionalization method of the graphene, physically or chemically, to enhance the dispersion of the graphene in rubber matrix, and the interfacial interactions between graphene and rubber. The recent advances in the wet functionalization approaches conducted to the graphene and the applications of the functional graphene in fabricating rubber composites are discussed.

()
图1 GO与rGO的制备过程示意图[44, 45]
Fig. 1 Schematic illustration of GO and reduced GO formation[44, 45]
表1 物理方法改性石墨烯提高橡胶复合材料的力学性能的研究
Table 1 Mechanical properties of physically functionalized graphene/rubber composites
图2 石墨烯、ZDMA-石墨烯和NR/ZDMA-石墨烯复合材料的制备[62]
Fig. 2 The preparation of pristine graphene, ZDMA- graphene and NR/ZDMA-graphene composites [62]
表2 GO提高橡胶复合材料力学性能的研究
Table 2 Mechanical properties of GO/rubber composites
表3 化学接枝石墨烯提升橡胶复合材料力学性能的研究
Table 3 Mechanical properties of molecules grafted graphene/rubber composites
表4 物理改性石墨烯提升橡胶复合材料热力学性能的研究
Table 4 Thermal properties of physically functionalized graphene/rubber composites
图3 SBR复合材料中改性石墨烯与橡胶基体的相互作用[34]
Fig. 3 Filler-matrix interactions in SBR composite system[34]
表5 化学改性石墨烯提升橡胶复合材料热学性能的研究
Table 5 Thermal properties of covalently functionalized graphene/rubber composites
图4 制备TEVS-GO和TEVS-GO/LSR复合材料的过程示意[58]
Fig. 4 Scheme of procedure for preparation of TEVS-GO and TEVS-GO/LSR composites[58]
表6 物理改性石墨提升橡胶复合材料电学性能的研究
Table 6 Electrical properties of physically functionalized graphene/rubber composites
图5 一步法制备功能化改性石墨烯/NRL纳米复合材料过程示意[41]
Fig. 5 Schematic of the one-step method for functionalized graphene/NRL nanocomposites production[41]
图6 改性石墨烯加入SBR/NR二元体系后形成双连互通网络过程示意[37]
Fig. 6 Schematic illustration for the fabrication of functionalized graphene/SBR-NR with a double-interconnected network[37]
表7 原位还原GO对提升橡胶复合材料电学性能的研究
Table 7 Electrical properties of in-situ reduced GO/rubber composites
图7 连续导电网络结构的rGO/橡胶复合材料的制备过程[104]
Fig. 7 The preparation of rGO/rubber composites with a conductive segregated network[104]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004,306(5696):666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896     URL     pmid: 15499015
[2]
Balandin A A . Nat. Mater., 2011,10(8):569. https://www.ncbi.nlm.nih.gov/pubmed/21778997

doi: 10.1038/nmat3064     URL     pmid: 21778997
[3]
Dasgupta A, Rajukumar L P, Rotella C, Lei Y, Terrones M . Nano Today, 2017,12:116.
[4]
Fasolino A, Los J H, Katsnelson M I . Nat. Mater., 2007,6(11):858. https://www.ncbi.nlm.nih.gov/pubmed/17891144

doi: 10.1038/nmat2011     URL     pmid: 17891144
[5]
Stoller M D, Park S, Zhu Y, An J, Ruoff R S . Nano Lett., 2008,8(10):3498.
[6]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K . Science, 2008,320(5881):1308. https://www.ncbi.nlm.nih.gov/pubmed/18388259

doi: 10.1126/science.1156965     URL     pmid: 18388259
[7]
Yang X, Tu Y, Li L, Shang S, Tao X M . ACS Appl., Mater. Interfaces, 2010,2(6):1707. https://www.ncbi.nlm.nih.gov/pubmed/20527778

doi: 10.1021/am100222m     URL     pmid: 20527778
[8]
Li Y, Tang L, Li J . Electrochem. Commun., 2009,11(4):846.
[9]
Feng L, Chen Y, Ren J, Qu X . Biomaterials, 2011,32(11):2930. https://www.ncbi.nlm.nih.gov/pubmed/21256585

doi: 10.1016/j.biomaterials.2011.01.002     URL     pmid: 21256585
[10]
Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H . Biomaterials, 2011,32(33):8555. https://www.ncbi.nlm.nih.gov/pubmed/21839507

doi: 10.1016/j.biomaterials.2011.07.071     URL     pmid: 21839507
[11]
Qin W, Li X, Bian W W, Fan X J, Qi J Y . Biomaterials, 2010,31(5):1007. https://www.ncbi.nlm.nih.gov/pubmed/19880174

doi: 10.1016/j.biomaterials.2009.10.013     URL     pmid: 19880174
[12]
Zhang L S, Liang X Q, Song W G, Wu Z Y . Phys. Chem. Chem. Phys., 2010,12(38):12055. https://www.ncbi.nlm.nih.gov/pubmed/20725652

doi: 10.1039/c0cp00789g     URL     pmid: 20725652
[13]
Dong L, Gari R R S, Li Z, Craig M M, Hou S . Carbon, 2010,48(3):781. https://linkinghub.elsevier.com/retrieve/pii/S0008622309007003

doi: 10.1016/j.carbon.2009.10.027     URL    
[14]
Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L . ACS Nano, 2011,5(9):6955. https://www.ncbi.nlm.nih.gov/pubmed/21834585

doi: 10.1021/nn201433r     URL     pmid: 21834585
[15]
Ang P K, Chen W, Wee A T S, Loh K P . J. Am. Chem. Soc., 2008,130(44):14392. https://www.ncbi.nlm.nih.gov/pubmed/18850701

doi: 10.1021/ja805090z     URL     pmid: 18850701
[16]
Petit C, Bandosz T J . Adv. Funct. Mater., 2010,20(1):111. http://doi.wiley.com/10.1002/adfm.v20%3A1

doi: 10.1002/adfm.v20:1     URL    
[17]
Wang S, Goh B M, Manga K K, Bao Q, Yang P, Loh K P . ACS Nano, 2010,4(10):6180. https://www.ncbi.nlm.nih.gov/pubmed/20825226

doi: 10.1021/nn101800n     URL     pmid: 20825226
[18]
Han T H, Lee W J, Lee D H, Kim J E, Choi E Y, Kim S O . Adv. Mater., 2010,22(18):2060. https://www.ncbi.nlm.nih.gov/pubmed/20352629

doi: 10.1002/adma.200903221     URL     pmid: 20352629
[19]
Jahan M, Bao Q, Yang J X, Loh K P . J. Am. Chem. Soc., 2010,132(41):14487. https://www.ncbi.nlm.nih.gov/pubmed/20863117

doi: 10.1021/ja105089w     URL     pmid: 20863117
[20]
NobelPrize. Available from: [2018-08-01]. http://www.nobelprize.org/. http://www.nobelprize.org/
[21]
Cheng H K F, Sahoo N G, Tan Y P, Pan Y, Bao H, Li L, Chan S H, Zhao J . ACS Appl. Mater. Interfaces, 2012,4(5):2387. https://www.ncbi.nlm.nih.gov/pubmed/22489641

doi: 10.1021/am300550n     URL     pmid: 22489641
[22]
Darque C E, Aucouturier M . Polym. Adv. Technol., 2013,25(3):322.
[23]
Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S . Chem. Rev., 2012,112(11):6156. https://www.ncbi.nlm.nih.gov/pubmed/23009634

doi: 10.1021/cr3000412     URL     pmid: 23009634
[24]
Aguilar-Bolados H, Brasero J, Lopez-Manchado M A, Yazdani-Pedram M . Composite Part B, 2014,67:449. https://linkinghub.elsevier.com/retrieve/pii/S1359836814003217

doi: 10.1016/j.compositesb.2014.08.010     URL    
[25]
Mohamed A, Ardyani T, Bakar S A, Sagisaka M, Umetsu Y, Hamon J J, Rahim B A, Esa S R, Khalil H P S A, Mamat M H . J. Colloid Interface Sci., 2018,516:34. https://www.ncbi.nlm.nih.gov/pubmed/29360058

doi: 10.1016/j.jcis.2018.01.041     URL     pmid: 29360058
[26]
Vadukumpully S, Paul J, Valiyaveettil S . Carbon, 2009,47(14):3288.
[27]
Matos C F, Galembeck F, Zarbin A J G . Carbon, 2014,78(18):469.
[28]
Guardia L, Fernández-Merino M J, Paredes J I, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón J . Carbon, 2011,49(5):1653.
[29]
Korattanawittaya S, Petcharoen K, Sangwan W, Tangboriboon N, Wattanakul K, Sirivat A . Polym. Eng. Sci., 2017,57(2):129.
[30]
Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon S B, Piccinini M, Illescas J, Mariani A . J. Mater. Chem., 2011,21(10):3428.
[31]
Xiong X, Wang J, Jia H, Fang E, Ding L . Polym. Degrad. Stab., 2013,98(11):2208.
[32]
Lin Y, Liu S, Peng J, Liu L . Compos. Sci. Technol., 2016,131:40.
[33]
Chen Y, Lin Y, Luo Y, Jia D, Liu L . Polym. Adv. Technol., 2016,27(6):830.
[34]
Yin B, Zhang X, Zhang X, Wang J, Wen Y, Jia H, Ji Q, Ding L . Polym. Adv. Technol., 2017,28(3):293.
[35]
Su Q, Pang S, Alijani V, Li C, Feng X, Muellen K . Adv. Mater., 2009,21(31):3191. http://doi.wiley.com/10.1002/adma.v21%3A31

doi: 10.1002/adma.v21:31     URL    
[36]
Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S . J. Mater. Chem., 2006,16(2):155.
[37]
Lin Y, Liu S, Chen S, Wei Y, Dong X, Liu L . J. Mater. Chem. C, 2016,4(26):6345.
[38]
Choi E Y, Han T H, Hong J, Kim J E, Lee S H, Kim H W, Kim S O . J. Mater. Chem., 2010,20(10):1907. http://xlink.rsc.org/?DOI=b919074k

doi: 10.1039/b919074k     URL    
[39]
Zhou Z, Zhang X, Wu X, Lu C . Compos. Sci. Technol., 2016,125:1.
[40]
Cao J, Zhang X, Wu X, Wang S, Lu C . Carbohydr. Polym., 2016,140:88. https://www.ncbi.nlm.nih.gov/pubmed/26876831

doi: 10.1016/j.carbpol.2015.12.042     URL     pmid: 26876831
[41]
Dong B, Wu S, Zhang L, Wu Y . Ind. Eng. Chem. Res., 2016,55(17):4919. https://pubs.acs.org/doi/10.1021/acs.iecr.6b00214

doi: 10.1021/acs.iecr.6b00214     URL    
[42]
Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F, Liu L . Composites Part A, 2015,70:35. https://linkinghub.elsevier.com/retrieve/pii/S1359835X14003911

doi: 10.1016/j.compositesa.2014.12.008     URL    
[43]
Wang H, Wu J, Gong K, Hao Q, Wang X, Jiang J, Li Z, Lai G . RSC Adv., 2016,6(65):60160. http://xlink.rsc.org/?DOI=C6RA10745A

doi: 10.1039/C6RA10745A     URL    
[44]
Hummers W S, Offeman R E . J. Am. Chem. Soc., 1958,80(6):1339. ded0d295-2aff-415b-a579-89db9a3a6f8chttps://pubs.acs.org/doi/abs/10.1021/ja01539a017

doi: 10.1021/ja01539a017     URL    
[45]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S . Carbon, 2007,45(7):1558. https://www.ncbi.nlm.nih.gov/pubmed/7189441

doi: 10.1002/1097-0142(19800401)45:7【-逻*辑*与-】amp;amp;lt;1558::aid-cncr2820450708【-逻*辑*与-】amp;amp;gt;3.0.co;2-2     URL     pmid: 7189441
[46]
Paredes J I, Villar-Rodil S, Martinez-Alonso A, Tascon J M D . Langmuir, 2008,24(19):10560. https://www.ncbi.nlm.nih.gov/pubmed/18759411

doi: 10.1021/la801744a     URL     pmid: 18759411
[47]
Hernandez M, del Mar Bernal M, Verdejo R, Ezquerra T A, Lopez-Manchado M A . Compos. Sci. Technol., 2012,73:40. https://linkinghub.elsevier.com/retrieve/pii/S0266353812003156

doi: 10.1016/j.compscitech.2012.08.012     URL    
[48]
Bai X, Wan C, Zhang Y, Zhai Y . Carbon, 2011,49(5):1608. ef10f05b-929a-4f0b-a468-1e196df80ee8http://dx.doi.org/10.1016/j.carbon.2010.12.043

doi: 10.1016/j.carbon.2010.12.043     URL    
[49]
Gan L, Shang S, Jiang S X . Composite Part B, 2016,84:294. https://linkinghub.elsevier.com/retrieve/pii/S1359836815005132

doi: 10.1016/j.compositesb.2015.08.073     URL    
[50]
Xing W, Tang M, Wu J, Huang G, Li H, Lei Z, Fu X, Li H . Compos. Sci. Technol., 2014,99:67. https://linkinghub.elsevier.com/retrieve/pii/S0266353814001584

doi: 10.1016/j.compscitech.2014.05.011     URL    
[51]
Song J, Chen C, Zhang Y . Compos. Part A-Appl. S., 2018,105:1. https://linkinghub.elsevier.com/retrieve/pii/S1359835X17304001

doi: 10.1016/j.compositesa.2017.11.001     URL    
[52]
Dong H, Jia Y, Chen Y, Luo Y, Zhong B, Jia D . Compos. Sci. Technol., 2018,164:267. https://linkinghub.elsevier.com/retrieve/pii/S0266353818306213

doi: 10.1016/j.compscitech.2018.05.047     URL    
[53]
Liu X, Kuang W, Guo B . Polymer, 2015,56:553. https://linkinghub.elsevier.com/retrieve/pii/S0032386114010854

doi: 10.1016/j.polymer.2014.11.048     URL    
[54]
Yang X, Zhang Y, Xu Y, Gao S, Guo S . Macromol. Res., 2017,25(3):270. http://link.springer.com/10.1007/s13233-017-5035-7

doi: 10.1007/s13233-017-5035-7     URL    
[55]
Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J . Polymer, 2013,54(7):1930. 70fb7135-bd93-409d-a9ec-9ff7fe37d7d5http://dx.doi.org/10.1016/j.polymer.2013.01.049

doi: 10.1016/j.polymer.2013.01.049     URL    
[56]
Doufnoune R, Haddaoui N . J. Polym. Res., 2017,24(9):138.
[57]
Zhang Y, Zhu Y, Lin G, Ruoff R S, Hu N, Schaefer D W, Mark J E . Polymer, 2013,54(14):3605.
[58]
Zhao X W, Zang C G, Wen Y Q, Jiao Q J . J. Appl. Polym. Sci., 2015,132(38):42582.
[59]
Zhong B, Jia Z, Dong H, Luo Y, Jia D, Liu F . Chem. Eng. J., 2017,317:51.
[60]
Wu Y, Chen L, Li J, Zhou H, Zhao H, Chen J . Eur. Polym. J., 2017,89:150.
[61]
Tian L, Jin E, Mei H, Ke Q, Li Z, Kui H . J. Bionic Eng., 2017,14(1):130.
[62]
Lin Y, Liu K, Chen Y, Liu L . Polym. Composite., 2015,36(10):1775.
[63]
Yang X, Zhang Y, Xu Y, Gao S, Guo S . Polym. Bull., 2017,74(12):1.
[64]
Liu X, Sun D, Wang L, Guo B . Ind. Eng. Chem. Res., 2013,52(41):14592.
[65]
Zhang X, Wang J, Jia H, You S, Xiong X, Ding L, Xu Z . Composite Part B, 2016,84:121.
[66]
Yu Z, Shi Z, Xu H, Ma X, Tian M, Yin J . Carbon, 2017,114:649. https://www.ncbi.nlm.nih.gov/pubmed/16675415

doi: 10.1289/ehp.8422     URL     pmid: 16675415
[67]
Zhang X, Wang J, Jia H, Yin B, Ding L, Xu Z, Ji Q . RSC Adv., 2016,6(60):54668.
[68]
Ozbas B, Toki S, Hsiao B S, Chu B, Register R A, Aksay I A, Prud'homme R K, Adamson D H . J. Polym. Sci. Pol. Phys., 2012,50(10):718.
[69]
She X, He C, Peng Z, Kong L . Polymer, 2014,55(26):6803.
[70]
Li H, Yang L, Weng G, Xing W, Wu J, Huang G . J. Mater. Chem. A, 2015,3(44):22385.
[71]
Dong B, Liu C, Zhang L, Wu Y . RSC Adv., 2015,5(22):17140.
[72]
Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan T W, Zhang L, Liang Y, Liu L . Sci. Rep., 2013,3:1.
[73]
Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D . Macromolecules, 2014,47(24):8663.
[74]
Xing W, Li H, Huang G, Cai L H, Wu J . Compos. Sci. Technol., 2017,144.
[75]
Wang J, Jia H, Tang Y, Ji D, Sun Y, Gong X, Ding L . J. Mater. Sci., 2013,48(4):1571.
[76]
Wen Y, Yin Q, Jia H, Yin B, Zhang X, Liu P, Wang J, Ji Q, Xu Z . Composite Part B, 2017,124:250. https://linkinghub.elsevier.com/retrieve/pii/S1359836816332814

doi: 10.1016/j.compositesb.2017.05.006     URL    
[77]
Gan L, Shang S, Yuen C W M, Jiang S X, Luo N M . Composite Part B, 2015,69:237. https://linkinghub.elsevier.com/retrieve/pii/S1359836814004648

doi: 10.1016/j.compositesb.2014.10.019     URL    
[78]
Huang N J, Zang J, Zhang G D, Guan L Z, Li S N, Zhao L, Tang L C . RSC Adv., 2017,7(36):22045. https://www.ncbi.nlm.nih.gov/pubmed/28603608

doi: 10.1039/c7ra02792c     URL     pmid: 28603608
[79]
Zhang Y, Cho U R . Polym. Composite., 2018,39(9):3227.
[80]
Yang Z, Liu J, Liao R, Yang G, Wu X, Tang Z, Guo B, Zhang L, Ma Y, Nie Q, Wang F . Compos. Sci. Technol., 2016,132:68.
[81]
Lin Y, Liu S, Peng J, Liu L . Composites Part A, 2016,86:19. https://linkinghub.elsevier.com/retrieve/pii/S1359835X1630046X

doi: 10.1016/j.compositesa.2016.03.029     URL    
[82]
Luo Y, Wu Y, Luo K, Cai F, Zhai T, Wu S . Compos. Sci. Technol., 2018,161:32. https://linkinghub.elsevier.com/retrieve/pii/S0266353817328324

doi: 10.1016/j.compscitech.2018.03.036     URL    
[83]
Zhao Z, Li L, Shao X, Liu X, Zhao S, Xie S, Xin Z . Polym. Test., 2018,70:396. https://linkinghub.elsevier.com/retrieve/pii/S0142941818306639

doi: 10.1016/j.polymertesting.2018.07.020     URL    
[84]
Yin B, Wang J, Jia H, He J, Zhang X, Xu Z . J. Mater. Sci., 2016,51(12):5724.
[85]
Wang L, Wang W, Fu Y, Wang J, Lvov Y, Liu J, Lu Y, Zhang L . Composite Part B, 2016,90:457.
[86]
Kotal M, Banerjee S S, Bhowmick A K . Polymer, 2016,82:121.
[87]
Kim P, Shi L, Majumdar A, McEuen P L . Phys. Rev. Lett., 2001,87(21):215502. https://www.ncbi.nlm.nih.gov/pubmed/11736348

doi: 10.1103/PhysRevLett.87.215502     URL     pmid: 11736348
[88]
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N . Nano Lett., 2008,8(3):902. https://www.ncbi.nlm.nih.gov/pubmed/18284217

doi: 10.1021/nl0731872     URL     pmid: 18284217
[89]
Suriani A B, Nurhafizah M D, Mohamed A, Masrom A K, Sahajwalla V, Joshi R K . Mater. Design, 2016,99:174.
[90]
Tian L, Wang Y, Li Z, Mei H, Shang Y . Exp. Therm. Fluid Sci., 2017,85:363.
[91]
Zhang H, Lin Y, Zhang D, Wang W, Xing Y, Lin J, Hong H, Li C . Curr. Appl. Phys., 2016,16(12):1695.
[92]
Abd R J, Ahmad S H, Ratnam C T, Mahamood M A, Mohamad N . J. Mater. Sci., 2015,50(19):6365.
[93]
Tian M, Ma Q, Li X, Zhang L, Nishi T, Ning N . J. Mater. Chem. A, 2014,2(29):11144.
[94]
Rybinski P, Anyszka R, Imiela M, Sicinski M, Gozdek T . J. Therm. Anal. Calorim., 2017,127(3):2383. http://link.springer.com/10.1007/s10973-016-5841-8

doi: 10.1007/s10973-016-5841-8     URL    
[95]
Lin S C, Ma C C M, Liao W H, Wang J A, Zeng S J, Hsu S Y, Chen Y H, Hsiao S T, Cheng T Y, Lin C W, Hsiao P Y . J. Taiwan Inst. Chem. Eng., 2016,68:396.
[96]
Guezzout Z, Doufnoune R, Haddaoui N . J. Polym. Res., 2017,8:24.
[97]
Fu B, Li X, Yuan G, Chen W, Pan Y . J. Nanomater., 2014,3.
[98]
Chen X, Zhuo J, Song W, Jiao C, Qian Y, Li S . Polym. Adv. Technol., 2014,25(12):1530.
[99]
Wang F, Drzal L T, Qin Y, Huang Z . Composites Part A, 2016,87:10.
[100]
Huang X, Qi X, Boey F, Zhang H . Chem. Soc. Rev., 2012,41(2):666. https://www.ncbi.nlm.nih.gov/pubmed/21796314

doi: 10.1039/c1cs15078b     URL     pmid: 21796314
[101]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K . Proc. Natl. Acad. Sci. U.S. A., 2005,102(30):10451. https://www.ncbi.nlm.nih.gov/pubmed/16027370

doi: 10.1073/pnas.0502848102     URL     pmid: 16027370
[102]
Aguilar-Bolados H, Lopez-Manchado M A, Brasero J, Aviles F, Yazdani-Pedram M . Composite Part B, 2016,87:350. https://linkinghub.elsevier.com/retrieve/pii/S1359836815005193

doi: 10.1016/j.compositesb.2015.08.079     URL    
[103]
Suriani A B, Nurhafizah M D, Mohamed A, Masrom A K, Mamat M H, Malek M F, Ahmad M K, Rosmi M S, Tanemura M . J. Mater. Sci., 2017,52(11):6611.
[104]
Zhan Y, Lavorgna M, Buonocore G, Xia H . J. Mater. Chem., 2012,22(21):10464.
[105]
He C, She X, Peng Z, Zhong J, Liao S, Gong W, Liao J, Kong L . Phys. Chem. Chem. Phys., 2015,17(18):12175. https://www.ncbi.nlm.nih.gov/pubmed/25881784

doi: 10.1039/c5cp00465a     URL     pmid: 25881784
[106]
Dong B, Zhang L, Wu Y . J. Mater. Sci., 2016,51(23):10561.
[107]
Zhan Y, Meng Y, Li Y . Mater. Lett., 2016,192.
[108]
Tian M, Zhang J, Zhang L, Liu S, Zan X, Nishi T, Ning N . J. Colloid Interface Sci., 2014,430:249. https://www.ncbi.nlm.nih.gov/pubmed/24972295

doi: 10.1016/j.jcis.2014.05.034     URL     pmid: 24972295
[109]
Ozbas B, O'Neill C D, Register R A, Aksay I A, Prud'homme R K, Adamson D H . J. Polym. Sci. Pol. Phys., 2012,50(13):910.
[110]
Shi G, Zhao Z, Pai J H, Lee I, Zhang L, Stevenson C, Ishara K, Zhang R, Zhu H, Ma J . Adv. Funct. Mater., 2016,26(42):7614.
[111]
Guo Q, Luo Y, Liu J, Zhang X, Lu C . J. Mater. Chem. C, 2018,6(8):2139.
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[7] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[12] 查东东, 周文, 银鹏, 郭斌, 李本刚, 黄亚男. 热塑性淀粉力学性能的提升途径及作用机理[J]. 化学进展, 2019, 31(7): 1044-1055.
[13] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[14] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.