English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 464-474 DOI: 10.7536/PC180711 前一篇   后一篇

• •

柔性电极的微观构建方式

贾盈娜, 刘兴兴, 卢赟**(), 苏岳锋**(), 陈人杰, 吴锋   

  1. 1. 北京理工大学材料学院环境科学与工程北京市重点实验室 北京 100081
  • 收稿日期:2018-07-11 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 卢赟, 苏岳锋
  • 基金资助:
    国家重点研发计划(2016YFB0100301); 国家自然科学基金项目(51802019); 国家自然科学基金项目(U1664255); 北京市重点高校重大成果转化项目

Flexible Electrode Assembled from Different Microstructures

Yingna Jia, Xingxing Liu, Yun Lu**(), Yuefeng Su**(), Renjie Chen, Feng Wu   

  1. 1. School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2018-07-11 Online:2019-02-15 Published:2018-12-20
  • Contact: Yun Lu, Yuefeng Su
  • About author:
    ** E-mail: (Yun Lu);
  • Supported by:
    National Key R&D Program of China(2016YFB0100301); National Natural Science Foundation of China(51802019); National Natural Science Foundation of China(U1664255); Major Achievements Transformation Project for Central Universities in Beijing

随着可穿戴柔性电子设备的发展,具有高能量密度和高功率特性的柔性电化学储能器件受到越来越广泛的关注。这些柔性储能器件主要包括柔性太阳能电池、柔性锂电池和柔性超级电容器等。而柔性电极作为柔性储能设备的核心组件,不仅需要具备基本的机械柔性,还应具有优良的导电性和骨架支撑强度,这样才可以保证储能器件在受到拉伸、弯曲、扭转等形变时电化学性能保持稳定。随着对柔性电极研究的不断深入,碳纳米管、碳纳米纤维、碳布、聚合物、金属化合物等具有不同宏观和微观形貌的材料单独或复合作为柔性电极基质的报道大量涌现。基于构成柔性电极的材料和微观结构,本文对构造柔性电极的方式进行了分类介绍,包括层叠结构、编织结构、嫁接结构、泡沫结构等; 对电极柔性的定量评估方法进行了归纳总结;最后对柔性电极面临的挑战与未来的发展方向进行了展望。

With the rapid development of wearable and flexible electronic equipment, the flexible electrochemical energy storage devices with high energy density and high power density have been widely interested and researched in numerous studies. The flexible energy storage devices, mainly include flexible solar batteries, flexible lithium batteries and flexible supercapacitors. As the core components of these devices, flexible electrodes should possess not only basic mechanical flexibility, but also excellent electrical conductivity and superior skeleton supporting strength, so as to ensure the energy storage devices tolerate various deformation such as stretching, bending and twisting and exert their electrochemical performance steadily. As the research goes deep, carbon nanotubes, carbon nanofibers, carbon cloth, polymer, metal compounds and their composites, with different macromorphology and micromorphology, have been reported as flexible matrix for electrodes in a large amount of literature recently. In this review, based on the materials and microstructures, different assembling methods for different microstructures including stacking structure, foam structure, weave structure, grafting structure, etc., for fabricating flexible electrodes, are illustrated. Also the existing methods for quantitatively evaluating the electrode flexibility are summarized. Finally, the major challenges in the future development for the flexible electrodes are illustrated and the prospects are forecast.

()
图1 (a)rGO/CNs/PANI薄膜合成示意图[9];(b)自支撑柔性石墨烯薄膜的弯曲后微观形貌图[12]
Fig. 1 (a) Synthesis diagram of rGO/CNs/PANI thin film[9];(b) Microtopography of flexible graphene film after bending[12]
图2 三明治MXene/CNT复合电极示意图[27]
Fig. 2 Diagram of sandwich MXene/CNT electrode[27]
图3 (a) 锂离子可通过的多孔PDMS-CNT纳米复合材料及其(b)柔性展示[37]
Fig. 3 (a) Porous PDMS-CNT nanocomposites accessed by Li-ion and(b) its flexibility[37]
图4 (a)竹子的分级结构及(b)纳米结构示意图[55]
Fig. 4 (a) Grading structure of bamboo and(b) schematic diagram of the nanostructure design inspired by bamboo[55]
图5 可折叠锂电池——棋盘图案的碳纳米管集流体[60]
Fig. 5 Prototype of folding battery, checkerboard pattern of CNT current collector[60]
图6 (a)CoSnO3/G/CNT复合薄膜的合成示意图[63];(b)活性纳米粒子、碳纳米管与PEDOT:PSS 交联示意图[65]
Fig. 6 (a) Synthesis diagram of CoSnO3/G/CNT composite film[63];(b) Cross-linking of active NP, CNT and PEDOT:PSS[65]
图7 TiO2 NAs/CT的制备过程示意图[71]
Fig. 7 Schematic diagram of the preparation of TiO2 NAs/CT[71]
图8 三维rGO/Te NW气凝胶合成及衍生柔性电极示意图[86]
Fig. 8 Diagram of manufacture of 3D rGO/Te NW aerogel and derived flexible electrode[86]
图9 (a)rGO/CNT/S纤维电池[87];(b)MWCNT/Si复合纤维[88]
Fig. 9 (a) rGO/CNT/S fiber cell[87];(b) Schematic diagram of MWCNT/Si composite fiber as electrode[88]
图10 柔性锂离子电池驱动的红色LED[101]
Fig. 10 Red LED powered by a flexible LIB[101]
图11 CNTs-rGO/S柔性电极的应力应变曲线[97]
Fig. 11 Stress-strain curves of CNTs-rGO/S electrode[97]
图12 (a)电缆形锂硫电池在不同弯曲角度下的开路电压[102];(b)在不同弯曲半径下循环十次的电阻[87]
Fig. 12 (a)The open circuit voltages at different bending angles of a cable-shaped Li-S battery[102];(b) change in electrical resistance for ten cycles each at different bending radii[87]
[1]
Manthiram A, Chung S H, Zu C . Adv. Mater., 2015,27(12):1980. https://www.ncbi.nlm.nih.gov/pubmed/25688969

doi: 10.1002/adma.201405115     URL     pmid: 25688969
[2]
Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G . Adv. Mater., 2014,26(28):4763. 83d2f066-6d38-4d22-a62a-1a4edbd61a37http://dx.doi.org/10.1002/adma.201400910

doi: 10.1002/adma.201400910     URL    
[3]
Wang D W, Li F, Liu M, Lu G Q, Cheng H M . Angew. Chem., 2008,120(2):379.
[4]
Luo S, Yao M, Lei S, Yan P, Wei X, Wang X, Liu L, Niu Z . Nanoscale, 2017,9(14):4646. https://www.ncbi.nlm.nih.gov/pubmed/28327706

doi: 10.1039/c7nr00999b     URL     pmid: 28327706
[5]
Cao J, Chen C, Zhao Q, Zhang N, Lu Q, Wang X, Niu Z, Chen J . Adv. Mater., 2016,28(43):9629. https://www.ncbi.nlm.nih.gov/pubmed/27647294

doi: 10.1002/adma.201602262     URL     pmid: 27647294
[6]
Zhou G, Zhao Y, Manthiram A . Adv. Energy Mater., 2015,5(9):1402263.
[7]
Chen H, Wang C, Dai Y, Qiu S, Yang J, Lu W, Chen L . Nano Lett., 2015,15(8):5443. https://www.ncbi.nlm.nih.gov/pubmed/26148126

doi: 10.1021/acs.nanolett.5b01837     URL     pmid: 26148126
[8]
Ferrero G A, Sevilla M, Fuertes A B . Sustainable Energy Fuels, 2017,1(1):127.
[9]
Liu D, Wang H, Du P, Wei W, Wang Q, Liu P . Electrochim. Acta., 2018,259:161.
[10]
Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K . Energy Environ. Sci., 2011,4(4):1277.
[11]
Liu Y, Yang Y, Wang X, Dong Y, Tang Y, Yu Z, Zhao Z, Qiu J . ACS Appl. Mater. Interfaces, 2017,9(18):15484. https://www.ncbi.nlm.nih.gov/pubmed/28429929

doi: 10.1021/acsami.7b02394     URL     pmid: 28429929
[12]
Li N, Huang X, Zhang H, Li Y, Wang C . ACS Appl. Mater. Interfaces, 2017,9(11):9763. https://www.ncbi.nlm.nih.gov/pubmed/28233984

doi: 10.1021/acsami.7b00487     URL     pmid: 28233984
[13]
Wang J, Cheng S, Li W, Zhang S, Li H, Zheng Z, Li F, Shi L, Lin H, Zhang Y . J. Power Sources, 2016,321:193.
[14]
Xu N, Qian T, Liu X, Liu J, Chen Y, Yan C . Nano Lett., 2017,17(1):538. https://www.ncbi.nlm.nih.gov/pubmed/27977209

doi: 10.1021/acs.nanolett.6b04610     URL     pmid: 27977209
[15]
Chen C, Wu M, Wang S, Yang J, Qin J, Peng Z, Feng T, Gong F . RSC Advances, 2017,7(61):38639.
[16]
Zhang X, Zhang M, Tian Y, You J, Yang C, Su J, Li Y, Gao Y, Gu H . RSC Advances, 2018,8(19):10698.
[17]
Zhao D, Li Z, Liu L, Zhang Y, Ren D, Li J . Acta Chimica Sinica, 2014,72(2):185.
[18]
Li M, Wahyudi W, Kumar P, Wu F, Yang X, Li H, Li L J, Ming J . ACS Appl. Mater. Interfaces, 2017,9(9):8047. https://www.ncbi.nlm.nih.gov/pubmed/28221020

doi: 10.1021/acsami.6b12546     URL     pmid: 28221020
[19]
Li Y, Ye D, Shi B, Liu W, Guo R, Pei H, Xie J . Phys. Chem. Chem. Phys., 2017,19(11):7498. https://www.ncbi.nlm.nih.gov/pubmed/28067361

doi: 10.1039/c6cp07784f     URL     pmid: 28067361
[20]
Liu D, Du P, Wei W, Wang H, Wang Q, Liu P . Electrochim. Acta., 2017,233:201.
[21]
Yue S, Tong H, Lu L, Tang W, Bai W, Jin F, Han Q, He J, Liu J, Zhang X . J. Mater. Chem. A, 2017,5(2):689. http://xlink.rsc.org/?DOI=C6TA09128H

doi: 10.1039/C6TA09128H     URL    
[22]
Liu W, Jiang J, Yang K R, Mi Y, Kumaravadivel P, Zhong Y, Fan Q, Weng Z, Wu Z, Cha J J, Zhou H, Batista V S, Brudvig G W, Wang H . Proc. Natl. Acad. Sci. U.S. A., 2017,114(14):3578. https://www.ncbi.nlm.nih.gov/pubmed/28320950

doi: 10.1073/pnas.1620809114     URL     pmid: 28320950
[23]
Hong X, Jin J, Wu T, Lu Y, Zhang S, Chen C, Wen Z . J. Mater. Chem. A, 2017,5(28):14775.
[24]
Zhang K, Xie K, Yuan K, Lu W, Hu S, Wei W, Bai M, Shen C . J. Mater. Chem. A, 2017,5(16):7309.
[25]
Zhang X, Zhang Z, Zhou Z . J. Energy Chem., 2018,27(1):73.
[26]
Han Y, Ge Y, Chao Y, Wang C, Wallace G G . J. Energy Chem., 2018,27(1):57.
[27]
Zhao M Q, Ren C E, Ling Z, Lukatskaya M R, Zhang C, Van Aken K L, Barsoum M W, Gogotsi Y . Adv. Mater., 2015,27(2):339. https://www.ncbi.nlm.nih.gov/pubmed/25405330

doi: 10.1002/adma.201404140     URL     pmid: 25405330
[28]
Tian Y, Yang C, Que W, Liu X, Yin X, Kong LB . J. Power Sources, 2017,359:332.
[29]
Yu L, Hu L, Anasori B, Liu Y T, Zhu Q, Zhang P, Gogotsi Y, Xu B . ACS Energy Lett., 2018,3(7):1597.
[30]
Jin K, Zhou X, Zhang L, Xin X, Wang G, Liu Z . J. Phys. Chem. C, 2013,117(41):21112.
[31]
Pandit B, Dhakate S R, Singh B P, Sankapal B R . Electrochim. Acta, 2017,249:395. https://linkinghub.elsevier.com/retrieve/pii/S0013468617316407

doi: 10.1016/j.electacta.2017.08.013     URL    
[32]
Bao J J, Zou B K, Cheng Q, Huang Y P, Wu F, Xu G W, Chen C H . J. Membr. Sci., 2017,541:633. https://linkinghub.elsevier.com/retrieve/pii/S0376738817311389

doi: 10.1016/j.memsci.2017.06.083     URL    
[33]
Kim H, Lee H, Kim M, Bae Y, Baek W, Park K, Park S, Kim T, Kwon H, Choi W, Kang K, Kwon S, Im D . Carbon, 2017,117:454.
[34]
Zeng L, Yao Y, Shi J, Jiang Y, Li W, Gu L, Yu Y . Energy Storage Mater., 2016,5:50.
[35]
Huang X, Sun B, Li K, Chen S, Wang G . J. Mater. Chem. A, 2013,1(43):13484.
[36]
Deng Z, Jiang H, Hu Y, Liu Y, Zhang L, Liu H, Li C . Adv. Mater., 2017,29(10):1603020. http://doi.wiley.com/10.1002/adma.201603020

doi: 10.1002/adma.201603020     URL    
[37]
Lee H, Yoo J K, Park J H, Kim J H, Kang K, Jung Y S . Adv. Energy Mater., 2012,2(8):976. 48373a64-7466-416e-a0af-3895e33edf95http://dx.doi.org/10.1002/aenm.201100725

doi: 10.1002/aenm.201100725     URL    
[38]
Lu Y, Zhao Q, Miao L, Tao Z, Niu Z, Chen J . J. Phys. Chem. C, 2017,121(27):14498.
[39]
Gao S, Zhang D, Zhu K, Tang J A, Gao Z, Wei Y, Chen G, Gao Y . J. Alloys. Compd., 2017,702:13. https://linkinghub.elsevier.com/retrieve/pii/S0925838817302694

doi: 10.1016/j.jallcom.2017.01.234     URL    
[40]
Sun L, Li M, Jiang Y, Kong W, Jiang K, Wang J, Fan S . Nano Lett., 2014,14(7):4044. https://www.ncbi.nlm.nih.gov/pubmed/24884659

doi: 10.1021/nl501486n     URL     pmid: 24884659
[41]
Liu F, Luo S, Liu D, Chen W, Huang Y, Dong L, Wang L . ACS Appl. Mater. Interfaces, 2017,9(39):33791. https://www.ncbi.nlm.nih.gov/pubmed/28884579

doi: 10.1021/acsami.7b08382     URL     pmid: 28884579
[42]
Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y . Adv. Sci(Weinh)., 2017,4(7):1700107. https://www.ncbi.nlm.nih.gov/pubmed/28725532

doi: 10.1002/advs.201700107     URL     pmid: 28725532
[43]
Di Blasi A, Busaccaa C, Di Blasia O, Briguglioa N, Squadritoa G, Antonuccia V . Appl. Energy., 2017,190:165.
[44]
Tao H, Xiong L, Du S, Zhang Y, Yang X, Zhang L . Carbon, 2017,122:54.
[45]
Wang H, Liu D, Du P, Liu P . Electrochim. Acta, 2017,228:371.
[46]
Sun Y, Qiao K, Zheng Y, Liu S, Xie Y, Zhang M, Yue L, Wang C . J. Electroanal. Chem., 2017,799:377.
[47]
Lu H Y, Zhang X H, Wan F, Liu D S, Fan C Y, Xu H M, Wang G, Wu X L . ACS Appl., Mater. Interfaces, 2017,9(14):12518. https://www.ncbi.nlm.nih.gov/pubmed/28345854

doi: 10.1021/acsami.7b01986     URL     pmid: 28345854
[48]
Wang X, Li G, Seo M H, Lui G, Hassan F M, Feng K, Xiao X, Chen Z . ACS Appl. Mater. Interfaces, 2017,9(11):9551. https://www.ncbi.nlm.nih.gov/pubmed/27808493

doi: 10.1021/acsami.6b12080     URL     pmid: 27808493
[49]
Wan C, Jiao Y, Li J . J. Mater. Chem. A, 2017,5(8):3819.
[50]
Li L, Liu P, Zhu K, Wang J, Tai G, Liu J . Electrochim. Acta., 2017,235:79.
[51]
Song X, Gao T, Wang S, Bao Y, Chen G, Ding L X, Wang H . J. Power Sources, 2017,356:172.
[52]
Yang D, Ni W, Cheng J, Wang Z, Wang T, Guan Q, Zhang Y, Wu H, Li X, Wang B . Appl. Surf. Sci., 2017,413:209.
[53]
Wang J, Zhang L, Zhou Q, Wu W, Zhu C, Liu Z, Chang S, Pu J, Zhang H . Electrochim Acta, 2017,237:119.
[54]
Fan P, Liu H, Liao L, Fu J, Wang Z, Lv G, Mei L, Hao H, Xing J, Dong J . RSC Adv., 2017,7(78):49739.
[55]
Sun Y, Sills R B, Hu X, Seh Z W, Xiao X, Xu H, Luo W, Jin H, Xin Y, Li T, Zhang Z, Zhou J, Cai W, Huang Y, Cui Y . Nano Lett., 2015,15(6):3899. https://www.ncbi.nlm.nih.gov/pubmed/26011653

doi: 10.1021/acs.nanolett.5b00738     URL     pmid: 26011653
[56]
Yoon S, Lee S, Kim S, Park K W, Cho D, Jeong Y . J. Power Sources, 2015,279:495.
[57]
Meng C, Liu C, Fan S . Electrochem. Commun., 2009,11(1):186.
[58]
Qie L, Manthiram A . Adv. Mater., 2015,27(10):1694. https://www.ncbi.nlm.nih.gov/pubmed/25605465

doi: 10.1002/adma.201405689     URL     pmid: 25605465
[59]
Chung S H, Chang C H, Manthiram A . Small, 2016,12(7):939. https://www.ncbi.nlm.nih.gov/pubmed/26715383

doi: 10.1002/smll.201503167     URL     pmid: 26715383
[60]
Li L, Wu Z P, Sun H, Chen D, Gao J, Suresh S, Chow P, Singh C V, Koratkar N . ACS Nano, 2015,9(11):11342. https://www.ncbi.nlm.nih.gov/pubmed/26412399

doi: 10.1021/acsnano.5b05068     URL     pmid: 26412399
[61]
Huang J Q, Peng H J, Liu X Y, Nie J Q, Cheng X B, Zhang Q, Wei F . J. Mater. Chem. A, 2014,2(28):10869.
[62]
Zhang X, Huang X, Xia L, Zhong B, Zhang X, Zhang T, Wen G . Ceram. Int., 2017,43(6):4753.
[63]
Zhao X, Wang G, Zhou Y, Wang H . Energy, 2017,118:172. https://linkinghub.elsevier.com/retrieve/pii/S0360544216318230

doi: 10.1016/j.energy.2016.12.018     URL    
[64]
Liu D, Wang H, Du P, Liu P . Carbon, 2017,122:761. https://www.ncbi.nlm.nih.gov/pubmed/30007427

doi: 10.1016/j.funbio.2018.04.004     URL     pmid: 30007427
[65]
Chen Z, To J W F, Wang C, Lu Z, Liu N, Chortos A, Pan L, Wei F, Cui Y, Bao Z . Adv. Energy Mater., 2014,4(12):1400207.
[66]
Wang H, Liu D, Du P, Wei W, Wang Q, Liu P . J. Colloid Interface Sci., 2017,506:572. https://www.ncbi.nlm.nih.gov/pubmed/28759857

doi: 10.1016/j.jcis.2017.07.088     URL     pmid: 28759857
[67]
Xue Y, Ding Y, Niu J, Xia Z, Roy A, Chen H, Qu J, Wang Z L, Dai L . Sci. Adv., 2015,1(8):1400198. https://www.ncbi.nlm.nih.gov/pubmed/26601246

doi: 10.1126/sciadv.1400198     URL     pmid: 26601246
[68]
Xi S, Zhu Y, Yang Y, Jiang S, Tang Z . Nanoscale Res. Lett., 2017,12(1):171. https://www.ncbi.nlm.nih.gov/pubmed/28274090

doi: 10.1186/s11671-017-1939-6     URL     pmid: 28274090
[69]
Wang Z, Liu M, Wei G, Han P, Zhao X, Liu J, Zhou Y, Zhang J . Appl. Surf. Sci., 2017,423:375. https://linkinghub.elsevier.com/retrieve/pii/S0169433217317853

doi: 10.1016/j.apsusc.2017.06.129     URL    
[70]
Guo J, Zhu H, Sun Y, Tang L, Zhang X . Chem. Eng. J., 2017,309:272.
[71]
Liu Q C, Xu J J, Xu D, Zhang X B . Nat. Commun., 2015,6:7892. https://www.ncbi.nlm.nih.gov/pubmed/26235205

doi: 10.1038/ncomms8892     URL     pmid: 26235205
[72]
Ummethala R, Fritzsche M, Jaumann T, Balach J, Oswald S, Nowak R, Sobczak N, Kaban I, Rümmeli M H, Giebeler L . Energy Storage Mater., 2018,10:206.
[73]
Liu L J, Chen Y, Zhang Z F, You X L, Walle M D, Li Y J, Liu Y N . J. Power Sources, 2016,325:301.
[74]
Zhang Q, Liu J, Li J, Huang L, Sun S . Chin. Sci. Bull., 2013,31(58):3220.
[75]
Zhou G, Li L, Ma C, Wang S, Shi Y, Koratkar N, Ren W, Li F, Cheng H M . Nano Energy, 2015,11:356. https://linkinghub.elsevier.com/retrieve/pii/S2211285514002304

doi: 10.1016/j.nanoen.2014.11.025     URL    
[76]
Liang S, Li Y, Yang J, Zhang J, He C, Liu Y, Zhou X . Adv. Mater. Technol., 2016,1(7):1600117. http://doi.wiley.com/10.1002/admt.201600117

doi: 10.1002/admt.201600117     URL    
[77]
Xiang M, Wu H, Liu H, Huang J, Zheng Y, Yang L, Jing P, Zhang Y, Dou S, Liu H . Adv. Funct. Mater., 2017,27(37):1702573. http://doi.wiley.com/10.1002/adfm.v27.37

doi: 10.1002/adfm.v27.37     URL    
[78]
Xiao W, Mi L, Cui S, Hou H, Chen W . New J. Chem., 2016,40(1):93. http://xlink.rsc.org/?DOI=C5NJ02938D

doi: 10.1039/C5NJ02938D     URL    
[79]
Mi L, Xiao W, Cui S, Hou H, Chen W . Dalton Trans., 2016,45(8):3305. https://www.ncbi.nlm.nih.gov/pubmed/26781929

doi: 10.1039/c5dt04577k     URL     pmid: 26781929
[80]
Cao Z, Zhang J, Ding Y, Li Y, Shi M, Yue H, Qiao Y, Yin Y, Yang S . J. Mater. Chem. A, 2016,4(22):8636. http://xlink.rsc.org/?DOI=C6TA01855F

doi: 10.1039/C6TA01855F     URL    
[81]
Huang Y, Zheng M, Lin Z, Zhao B, Zhang S, Yang J, Zhu C, Zhang H, Sun D, Shi Y . J. Mater. Chem. A, 2015,3(20):10910. http://xlink.rsc.org/?DOI=C5TA01515D

doi: 10.1039/C5TA01515D     URL    
[82]
Lin C, Niu C, Xu X, Li K, Cai Z, Zhang Y, Wang X, Qu L, Xu Y, Mai L . Phys. Chem. Chem. Phys., 2016,18(32):22146. https://www.ncbi.nlm.nih.gov/pubmed/27443983

doi: 10.1039/c6cp03624d     URL     pmid: 27443983
[83]
Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y . Nano Energy, 2015,11:678. https://linkinghub.elsevier.com/retrieve/pii/S2211285514002675

doi: 10.1016/j.nanoen.2014.11.060     URL    
[84]
Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G . J. Mater. Chem. A, 2014,2(17):6086. http://xlink.rsc.org/?DOI=C4TA00484A

doi: 10.1039/C4TA00484A     URL    
[85]
Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L . Adv. Mater., 2013,25(4):591. https://www.ncbi.nlm.nih.gov/pubmed/23081662

doi: 10.1002/adma.201203578     URL     pmid: 23081662
[86]
He J, Chen Y, Lv W, Wen K, Wang Z, Zhang W, Li Y, Qin W, He W . ACS Nano, 2016,10(9):8837. https://www.ncbi.nlm.nih.gov/pubmed/27552580

doi: 10.1021/acsnano.6b04622     URL     pmid: 27552580
[87]
Chong W G, Huang J Q, Xu Z L, Qin X, Wang X, Kim J K . Adv. Funct. Mater., 2017,27(4):1604815. http://doi.wiley.com/10.1002/adfm.v27.4

doi: 10.1002/adfm.v27.4     URL    
[88]
Lin H, Weng W, Ren J, Qiu L, Zhang Z, Chen P, Chen X, Deng J, Wang Y, Peng H . Adv. Mater., 2014,26(8):1217. https://www.ncbi.nlm.nih.gov/pubmed/24282151

doi: 10.1002/adma.201304319     URL     pmid: 24282151
[89]
Hoshide T, Zheng Y, Hou J, Wang Z, Li Q, Zhao Z, Ma R, Sasaki T, Geng F . Nano Lett., 2017,17(6):3543. https://www.ncbi.nlm.nih.gov/pubmed/28535338

doi: 10.1021/acs.nanolett.7b00623     URL     pmid: 28535338
[90]
Meng Q, Wu H, Mao L, Yuan H, Ahmad A, Wei Z . Adv. Mater. Technol., 2017,2(7):1700032. http://doi.wiley.com/10.1002/admt.201700032

doi: 10.1002/admt.201700032     URL    
[91]
Lei T, Peng R, Fan X, Wei Q, Liu Z, Guan Q, Song W, Hong L, Huang J, Yang R, Ge Z . Macromolecules, 2018,51(11):4032. https://pubs.acs.org/doi/10.1021/acs.macromol.8b00683

doi: 10.1021/acs.macromol.8b00683     URL    
[92]
Peng H, Wang X, Zhao Y, Tan T, Bakenov Z, Zhang Y . Polymers, 2018,10(4):399. http://www.mdpi.com/2073-4360/10/4/399

doi: 10.3390/polym10040399     URL    
[93]
Ma L, Zhang W, Wang L, Hu Y, Zhu G, Wang Y, Chen R, Chen T, Tie Z, Liu J, Jin Z . ACS Nano, 2018,12(5):4868. https://www.ncbi.nlm.nih.gov/pubmed/29683639

doi: 10.1021/acsnano.8b01763     URL     pmid: 29683639
[94]
Gou J, Zhang H, Yang X, Chen Y, Yu Y, Li X, Zhang H . Adv. Funct. Mater., 2018,28(20):1707272. http://doi.wiley.com/10.1002/adfm.201707272

doi: 10.1002/adfm.201707272     URL    
[95]
Zhu L, Peng H J, Liang J, Huang J Q, Chen C M, Guo X, Zhu W, Li P, Zhang Q . Nano Energy, 2015,11:746.
[96]
Chen Y, Lu S, Wu X, Liu J . J. Phys. Chem. C, 2015,119(19):10288.
[97]
Zhai P Y, Huang J Q, Zhu L, Shi J L, Zhu W, Zhang Q . Carbon, 2017,111:493.
[98]
Song X, Wang S, Bao Y, Liu G, Sun W, Ding L X, Liu H, Wang H . J. Mater. Chem. A, 2017,5(15):6832. http://xlink.rsc.org/?DOI=C7TA01171G

doi: 10.1039/C7TA01171G     URL    
[99]
Sun Q, Fang X, Weng W, Deng J, Chen P, Ren J, Guan G, Wang M, Peng H . Angew. Chem. Int. Ed. Engl., 2015,54(36):10539. https://www.ncbi.nlm.nih.gov/pubmed/26178766

doi: 10.1002/anie.201504514     URL     pmid: 26178766
[100]
Kwon Y H, Woo S, Jung H, Yu H K, Kim K, Oh B H, Ahn S, Lee S, Song S, Cho J, Shin H, Kim J Y . Adv. Mater., 2012,24(38):5192. https://www.ncbi.nlm.nih.gov/pubmed/22886776

doi: 10.1002/adma.201202196     URL     pmid: 22886776
[101]
Yin Z X, Song S K, Cho S, You D, Yoo J, Chang S T, Kim Y S . Nano Res., 2017,10(9):3077. http://link.springer.com/10.1007/s12274-017-1523-5

doi: 10.1007/s12274-017-1523-5     URL    
[102]
Fang X, Weng W, Ren J, Peng H . Adv. Mater., 2016,28(3):491. https://www.ncbi.nlm.nih.gov/pubmed/26585740

doi: 10.1002/adma.201504241     URL     pmid: 26585740
[103]
Peng H J, Huang J Q, Zhang Q . Chem. Soc. Rev., 2017,46(17):5237. https://www.ncbi.nlm.nih.gov/pubmed/28783188

doi: 10.1039/c7cs00139h     URL     pmid: 28783188
No related articles found!
阅读次数
全文


摘要

柔性电极的微观构建方式