English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 381-393 DOI: 10.7536/PC180604 前一篇   后一篇

• •

铁氧体磁性纳米催化剂的制备及其在资源能源领域的应用

朱向阳1,2, 倪善1,2, 毕秦岭3,**(), 杨良嵘1,**(), 邢慧芳1,2, 刘会洲1,2   

  1. 1. 中国科学院绿色过程与工程重点实验室(中国科学院过程工程研究所) 北京 100190
    2. 中国科学院大学 北京 100049
    3. 中国石油天然气股份有限公司石油化工研究院 北京 102206
  • 收稿日期:2018-06-04 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 毕秦岭, 杨良嵘
  • 基金资助:
    中石油企业合作项目(PRIKY17094); 国家自然科学基金项目(21676273); 国家自然科学基金项目(U1507203); 中国高科技研究与发展计划(2015CB251402); 北京市自然科学基金项目(2194086)

Preparation of Ferrite Magnetic Nano-Catalysts and Their Applications in the Field of Resources and Energy

Xiangyang Zhu1,2, Shan Ni1,2, Qinling Bi3,**(), Liangrong Yang1,**(), Huifang Xing1,2, Huizhou Liu1,2   

  1. 1. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Petro China Company Limited. Petrochemical Research Institute, Petro China, Beijing 102206, China
  • Received:2018-06-04 Online:2019-02-15 Published:2018-12-20
  • Contact: Qinling Bi, Liangrong Yang
  • About author:
    ** E-mail: (Liangrong Yang);
  • Supported by:
    work was supported by China Petroleum Enterprise Cooperation Project(PRIKY17094); National Natural Science Foundation of China(21676273); National Natural Science Foundation of China(U1507203); Chinese High Technology Research and Development Program(2015CB251402); Beijing Natural Science Fundation of China(2194086)

随着石油开采技术的不断提高,石油资源的开发和利用规模逐渐增大,然而现存的石油资源组成复杂、黏度高,使用常规的催化剂进行改质存在利用率低、回收困难等问题。生物质能已成为化石燃料的潜在替代品,生物质的催化转化是制备各种商品化学品或液体燃料的主要途径之一。然而生物质催化转化中常用的均相催化剂及非均相催化剂同样具有难回收再利用以及分离损失大等问题,限制了其应用。磁性纳米催化剂不仅具有高催化活性,在外加磁场作用下还能实现催化剂的回收与重复利用,在工业生产得以连续化的同时,也降低了生产成本,提高了生产效率。本综述介绍了铁氧体磁性纳米催化剂的制备方法,阐述了近年来铁氧体磁性纳米催化剂在催化脱硫、生物质催化转化为化学品、生物柴油的制备、煤液化领域的研究进展,指出了铁氧体磁性纳米催化剂在资源能源领域应用存在的问题,并对铁氧体磁性纳米颗粒的应用前景进行了展望。

With the development of exploitation technique, oil resources development and utilization have increased. However, the existing oil resources are complex in composition and high in viscosity. The use of conventional catalysts for upgrading has problems of low utilization efficiency, difficulty in recovery, etc. Biomass has emerged as a potential alternative to the dwindling fossil fuel reserves. Catalytic conversion of biomass has become one of the main routes for the transformation of biomass into a variety of commodity chemicals or liquid fuels. However, the common homogeneous and heterogeneous catalysts used in biomass catalytic conversion also have problems such as difficulty in recycling and big consumption, which limits their applications. Magnetic nano-catalysts, as new catalysts, not only have high catalytic activity, but also can be separated under the external magnetic field, achieving their recovery and reuse, making industry production serialization, reducing the cost of chemical production, and improving the production. Here we review the preparation methods of ferrite magnetic nano-catalysts. We also present their recent advances in the fields of catalytic desulfurization, catalytic conversion of biomass to chemicals, production of biodiesel, coal liquefaction, and analyze the problems to be solved for the specific applications in the field of resources and energy. Finally, the prospects on the application of ferrite magnetic nanoparticles are outlined.

()
图1 Fe3O4-SiO2-CTS-PEI颗粒的合成路线[27]
Fig. 1 Synthesis of Fe3O4-SiO2-CTS-PEI particles[27]
图2 磁性球形γ-Al2O3复合颗粒的合成路线示意图[28]
Fig. 2 The synthesis route of spherical magnetic γ-Al2O3 composites[28]
图3 m-PGMA-EDA的合成路线[32]
Fig. 3 Preparation of the m-PGMA-EDA microspheres[32]
图4 磁性纳米金颗粒Fe3O4@Au 的合成路线图[57]
Fig. 4 Schematic illustration of synthetic route of the Fe3O4@Au nanoparticles[57]
图5 磁性可回收铜纳米催化剂[65]
Fig. 5 Magnetically recoverable copper nanocatalysts[65]
图6 磁性可回收钼纳米催化剂[68]
Fig. 6 Magnetically recoverable molybdenum nano-catalysts[68]
图7 DBT的HDS可能路径[70]
Fig. 7 Possible reaction pathways in HDS of DBT[70]
图8 4,6-DMDBT的HDS可能路径[70]
Fig. 8 Possible reaction pathways in HDS of 4,6-DMDBT[70]
图9 HMF氧化成DFF[81]
Fig. 9 The oxidation of HMF into DFF[81]
表1 磁性纳米催化剂制备生物柴油[79]
Table 1 Production of biodiesel over magnetic catalysts[79]
[1]
张利波(Zhang L B), 王璐(Wang L), 曲雯雯(Qu W W), 徐盛明(Xu S M), 张家麟(Zhang J L) . 材料导报, 2018,(05):772.
[2]
Wang H, Fu P, Li J, Huang Y, Zhao Y, Jiang L, Fang X, Yang T, Huang Z, Huang C . Engineering, 2018,4(3):406.
[3]
Wang D, Astruc D . Chemical Reviews, 2014,114(14):6949. https://www.ncbi.nlm.nih.gov/pubmed/24892491

doi: 10.1021/cr500134h     URL     pmid: 24892491
[4]
Boon Y H, Mohamad Zain N N, Mohamad S, Osman H, Raoov M . Food Chemistry, 2019,278:322. https://www.ncbi.nlm.nih.gov/pubmed/30583379

doi: 10.1016/j.foodchem.2018.10.145     URL     pmid: 30583379
[5]
Rathi A K, Gawande M B, Pechousek J, Tucek J, Aparicio C, Petr M, Tomanec O, Krikavova R, Travnicek Z, Varma R S, Zboril R . Green Chemistry, 2016,18(8):2363.
[6]
Zhu Y, Stubbs L P, Ho F, Liu R, Ship C P, Maguire J A, Hosmane N S . ChemCatChem, 2010,2(4):365.
[7]
Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J . Chemical Reviews, 2011,111(5):3036. https://www.ncbi.nlm.nih.gov/pubmed/21401074

doi: 10.1021/cr100230z     URL     pmid: 21401074
[8]
Baig R B N, Varma R S . Chemical Communications, 2013,49(8):752. https://www.ncbi.nlm.nih.gov/pubmed/23212208

doi: 10.1039/c2cc35663e     URL     pmid: 23212208
[9]
Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D . Nano Today, 2016,11(4):464.
[10]
Sankaranarayanapillai S, Volker S, R. T W . Angewandte Chemie International Edition, 2010,49(20):3428. https://www.ncbi.nlm.nih.gov/pubmed/20419718

doi: 10.1002/anie.200905684     URL     pmid: 20419718
[11]
Yin M, O’Brien S . Journal of the American Chemical Society, 2003,125(34):10180. https://www.ncbi.nlm.nih.gov/pubmed/12926934

doi: 10.1021/ja0362656     URL     pmid: 12926934
[12]
Bin N H, Chan S I, Taeghwan H . Advanced Materials, 2009,21(21):2133.
[13]
Jana N R, Chen Y, Peng X . Chemistry of Materials, 2004,16(20):3931.
[14]
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N . Chemical Reviews, 2008,108(6):2064. https://www.ncbi.nlm.nih.gov/pubmed/18543879

doi: 10.1021/cr068445e     URL     pmid: 18543879
[15]
Lim C W, Lee I S . Nano Today, 2010,5(5):412.
[16]
Griffiths C H, Horo M P O, Smith T W . Journal of Applied Physics, 1979,50(11):7108.
[17]
Zhang Z J, Wang Z L, Chakoumakos B C, Yin J S . Journal of the American Chemical Society, 1998,120(8):1800.
[18]
Chandel M, Ghosh B K, Moitra D, Patra M K, Vadera S R, Ghosh N N . 2018,18:2481.
[19]
Quandt N, Syrowatka F, Roth R, Ebbinghaus S G . Thin Solid Films, 2017,636:573.
[20]
Patnaik S, Das K K, Mohanty A, Parida K . Catalysis Today, 2018,315:52.
[21]
Robinson I, Tung L D, Maenosono S, Walti C, Thanh N T K . Nanoscale, 2010,2(12):2624. https://www.ncbi.nlm.nih.gov/pubmed/20967339

doi: 10.1039/c0nr00621a     URL     pmid: 20967339
[22]
Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z . Nanoscale, 2011,3(11):4474. https://www.ncbi.nlm.nih.gov/pubmed/21984390

doi: 10.1039/c1nr11000d     URL     pmid: 21984390
[23]
Pershina A G, Sazonov A E, Filimonov V D . Russian Chemical Reviews, 2014,83(4):299.
[24]
Malik V, Suthar K J, Mancini D C, Ilavsky J . Journal of Magnetism and Magnetic Materials, 2014,354:70.
[25]
Wierucka M, Biziuk M . TrAC Trends in Analytical Chemistry, 2014,59:50.
[26]
Martin G A, De Mongolfier P, Imelik B . Surface Science, 1973,36(2):675.
[27]
Sun X, Yang L, Li Q, Liu Z, Dong T, Liu H . Chemical Engineering Journal, 2015,262:101.
[28]
Lang Y, Wang Q, Xing J, Zhang B, Liu H . AIChE Journal, 2008,54(9):2303.
[29]
Peng Y, Dong M, Meng X, Zong B, Zhang J . AIChE Journal, 2009,55(3):717.
[30]
Liu Y, Li L, Liu S, Xie C, Yu S . RSC Advances, 2016,6(84):81310.
[31]
Zhang Y, Zhang M, Yang J, Ding L, Zheng J, Xu J, Xiong S . Nanoscale, 2016,8(35):15978. https://www.ncbi.nlm.nih.gov/pubmed/27539541

doi: 10.1039/c6nr05078f     URL     pmid: 27539541
[32]
Dong T, Yang L, Pan F, Xing H, Wang L, Yu J, Qu H, Rong M, Liu H . Journal of Magnetism and Magnetic Materials, 2017,427:289.
[33]
Altıntas E B, Türkmen D, Karakoç V, Denizli A . Colloids and Surfaces B: Biointerfaces, 2011,85(2):235. https://www.ncbi.nlm.nih.gov/pubmed/21435847

doi: 10.1016/j.colsurfb.2011.02.034     URL     pmid: 21435847
[34]
Köse K, Denizli A . Artificial Cells, Nanomedicine, and Biotechnology, 2013,41(1):13. https://www.ncbi.nlm.nih.gov/pubmed/23110388

doi: 10.3109/10731199.2012.696067     URL     pmid: 23110388
[35]
Erol K, Uzunoglu A, Köse K, Sarıca B, Avcı E, Köse D A . Journal of Chromatography B, 2018, 1081-1082:1. https://www.ncbi.nlm.nih.gov/pubmed/29494983

doi: 10.1016/j.jchromb.2018.02.017     URL     pmid: 29494983
[36]
Polshettiwar V, Varma R S . Tetrahedron, 2010,66(5):1091.
[37]
Zheng Y, Stevens P D, Gao Y . The Journal of Organic Chemistry, 2006,71(2):537. https://www.ncbi.nlm.nih.gov/pubmed/16408961

doi: 10.1021/jo051861z     URL     pmid: 16408961
[38]
Tucker S A K, Garrell R L . Chemistry-A European Journal, 2010,16(42):12718. https://www.ncbi.nlm.nih.gov/pubmed/20853280

doi: 10.1002/chem.200903527     URL     pmid: 20853280
[39]
Baghayeri M, Amiri A, Maleki B, Alizadeh Z, Reiser O . Sensors and Actuators B: Chemical, 2018,273:1442.
[40]
Kawamura M, Sato K . Chemical Communications, 2007,(32):3404. https://www.ncbi.nlm.nih.gov/pubmed/18019512

doi: 10.1039/b705640k     URL     pmid: 18019512
[41]
Peng F, Wang Q, Shi R, Wang Z, You X, Liu Y, Wang F, Gao J, Mao C . Scientific Reports, 2016,6(1).
[42]
Rossi L M, Costa N J S, Silva F P, Wojcieszak R . Green Chemistry, 2014,16(6):2906. b28483b0-be81-40de-81a9-bb6c79f44d54http://dx.doi.org/10.1039/c4gc00164h

doi: 10.1039/c4gc00164h     URL    
[43]
Tristão J C, Oliveira A A S, Ardisson J D, Dias A, Lago R M . Materials Research Bulletin, 2011,46(5):748. 97990dda-7c10-4467-95fd-69655bc28656http://dx.doi.org/10.1016/j.materresbull.2011.01.008

doi: 10.1016/j.materresbull.2011.01.008     URL    
[44]
Geng J, Jefferson D A, Johnson B F G . Chemical Communications, 2004,(21):2442. https://www.ncbi.nlm.nih.gov/pubmed/15514806

doi: 10.1039/b406227b     URL     pmid: 15514806
[45]
Hirao T . Chemical Reviews, 1997,97(8):2707. https://www.ncbi.nlm.nih.gov/pubmed/11851478

doi: 10.1021/cr960014g     URL     pmid: 11851478
[46]
Park J, Cheon J . Journal of the American Chemical Society, 2001,123(24):5743. https://www.ncbi.nlm.nih.gov/pubmed/11403607

doi: 10.1021/ja0156340     URL     pmid: 11403607
[47]
Álvarez P M, Jaramillo J, López-Piñero F, Plucinski P K . Applied Catalysis B: Environmental, 2010,100(1):338. https://linkinghub.elsevier.com/retrieve/pii/S0926337310003565

doi: 10.1016/j.apcatb.2010.08.010     URL    
[48]
Ye M, Zorba S, He L, Hu Y, Maxwell R T, Farah C, Zhang Q, Yin Y . Journal of Materials Chemistry, 2010,20(37):7965. http://xlink.rsc.org/?DOI=c0jm02001j

doi: 10.1039/c0jm02001j     URL    
[49]
He Q, Zhang Z, Xiong J, Xiong Y, Xiao H . Optical Materials, 2008,31(2):380. https://www.ncbi.nlm.nih.gov/pubmed/26866939

doi: 10.1002/jbmr.2705     URL     pmid: 26866939
[50]
Shiri L, Ghorbani-Choghamarani A, Kazemi M . Australian Journal of Chemistry, 2017,70(1):9. http://www.publish.csiro.au/?paper=CH16318

doi: 10.1071/CH16318     URL    
[51]
Chemler S R . Beilstein Journal of Organic Chemistry, 2015,11:2252. https://www.ncbi.nlm.nih.gov/pubmed/26664648

doi: 10.3762/bjoc.11.244     URL     pmid: 26664648
[52]
黄寅斌(Huang Y B), 杨良嵘(Yang L B), 邢慧芳(Xing H F), 李鹏飞(Li P F, 李文松(Li W S), 刘会洲(Liu H Z), . 化学通报, 2011,(12):1084.
[53]
Ghalandari A, Taghizadeh M, Rahmani M . Chemical Engineering & Technology, 2019,42(1):89.
[54]
Huang R, Tang T . Nano, 2018,13(11):1850128. https://www.worldscientific.com/doi/abs/10.1142/S179329201850128X

doi: 10.1142/S179329201850128X     URL    
[55]
Cheng T, Zhang D, Li H, Liu G . Green Chemistry, 2014,16(7):3401. 60524025-ff94-4267-b987-684c7e6612b8http://dx.doi.org/10.1039/c4gc00458b

doi: 10.1039/c4gc00458b     URL    
[56]
Ban Z, Barnakov Y A, Li F, Golub V O, O’Connor C J . Journal of Materials Chemistry, 2005,15(43):4660. http://xlink.rsc.org/?DOI=b504304b

doi: 10.1039/b504304b     URL    
[57]
Qu H, Yang L, Yu J, Dong T, Rong M, Zhang J, Xing H, Wang L, Pan F, Liu H . RSC Advances, 2017,7(57):35704. https://www.ncbi.nlm.nih.gov/pubmed/29225796

doi: 10.1039/C7RA05041K     URL     pmid: 29225796
[58]
Tamoradi T, Ghorbani-Choghamarani A, Ghadermazi M . Polyhedron, 2019,157:374. https://linkinghub.elsevier.com/retrieve/pii/S0277538718306491

doi: 10.1016/j.poly.2018.10.013     URL    
[59]
Mori K, Yoshioka N, Kondo Y, Takeuchi T, Yamashita H . Green Chemistry, 2009,11(9):1337. http://xlink.rsc.org/?DOI=b905331j

doi: 10.1039/b905331j     URL    
[60]
Ji Z, Shen X, Zhu G, Zhou H, Yuan A . Journal of Materials Chemistry, 2012,22(8):3471. 052bb80a-7453-4bbc-912e-e248905763f0http://dx.doi.org/10.1039/c2jm14680k

doi: 10.1039/c2jm14680k     URL    
[61]
Rashid M H, Raula M, Mandal T K . Journal of Materials Chemistry, 2011,21(13):4904. a1401d23-6f66-469d-b4b1-54e7179f06e2http://dx.doi.org/10.1039/c0jm03047c

doi: 10.1039/c0jm03047c     URL    
[62]
Rezaeifard A, Jafarpour M, Farshid P, Naeimi A . European Journal of Inorganic Chemistry, 2012,2012(33):5515. http://doi.wiley.com/10.1002/ejic.201200753

doi: 10.1002/ejic.201200753     URL    
[63]
Shin K S, Choi J, Park C S, Jang H J, Kim K . Catalysis Letters, 2009,133(1):1. http://link.springer.com/10.1007/s10562-009-0124-7

doi: 10.1007/s10562-009-0124-7     URL    
[64]
Zhang X, Jiang W, Gong X, Zhang Z . Journal of Alloys and Compounds, 2010,508(2):400. https://linkinghub.elsevier.com/retrieve/pii/S0925838810020724

doi: 10.1016/j.jallcom.2010.08.070     URL    
[65]
Ghorbani C A, Darvishnejad Z, Norouzi M . Applied Organometallic Chemistry, 2015,29(3):170. http://doi.wiley.com/10.1002/aoc.3266

doi: 10.1002/aoc.3266     URL    
[66]
Shi F, Tse M K, Pohl M, Radnik J, Brückner A, Zhang S, Beller M . Journal of Molecular Catalysis A: Chemical, 2008,292(1):28. https://linkinghub.elsevier.com/retrieve/pii/S1381116908002823

doi: 10.1016/j.molcata.2008.06.008     URL    
[67]
Rafiee E, Eavani S . Green Chemistry, 2011,13(8):2116. https://www.ncbi.nlm.nih.gov/pubmed/25024006

doi: 10.1158/1535-7163.MCT-13-0952     URL     pmid: 25024006
[68]
Keypour H, Balali M, Haghdoost M M, Bagherzadeh M . RSC Advances, 2015,5(66):53349. https://www.ncbi.nlm.nih.gov/pubmed/27019703

doi: 10.1039/c5ra08857g     URL     pmid: 27019703
[69]
Sharifvaghefi S, Zheng Y . ChemCatChem, 2015,7(20):3397. http://doi.wiley.com/10.1002/cctc.201500517

doi: 10.1002/cctc.201500517     URL    
[70]
Sharifvaghefi S, Zheng Y . ChemistrySelect, 2017,2(17):4678. http://doi.wiley.com/10.1002/slct.201700851

doi: 10.1002/slct.201700851     URL    
[71]
Alizadeh A, Fakhari M, Khodeai M M, Abdi G, Amirian J . RSC Advances, 2017,7(56):34972. http://xlink.rsc.org/?DOI=C7RA04957A

doi: 10.1039/C7RA04957A     URL    
[72]
Liu R, Dou S, Yu M, Wang R . Journal of Cleaner Production, 2017,168:1048. https://linkinghub.elsevier.com/retrieve/pii/S0959652617320875

doi: 10.1016/j.jclepro.2017.09.097     URL    
[73]
Jiang C, Wang J, Wang S, Guan H Y, Wang X, Huo M . Applied Catalysis B: Environmental, 2011,106(3):343. https://linkinghub.elsevier.com/retrieve/pii/S0926337311002578

doi: 10.1016/j.apcatb.2011.05.038     URL    
[74]
Zhang J, Zhu W, Li H, Jiang W, Jiang Y, Huang W, Yan Y . Green Chemistry, 2009,11(11):1801. http://xlink.rsc.org/?DOI=b914130h

doi: 10.1039/b914130h     URL    
[75]
Rafiee E, Rahpeyma N . Chinese Journal of Catalysis, 2015,36(8):1342. https://linkinghub.elsevier.com/retrieve/pii/S1872206715608622

doi: 10.1016/S1872-2067(15)60862-2     URL    
[76]
Wiredu B, Amarasekara A S . Catalysis Communications, 2014,48:41. 13f06f83-262f-4713-a692-e03c2da41295http://dx.doi.org/10.1016/j.catcom.2014.01.021

doi: 10.1016/j.catcom.2014.01.021     URL    
[77]
Elsayed I, Mashaly M, Eltaweel F, Jackson M A, Hassan E B . Fuel, 2018,221:407. https://linkinghub.elsevier.com/retrieve/pii/S0016236118303181

doi: 10.1016/j.fuel.2018.02.135     URL    
[78]
Dutta S, De S, Saha B . Biomass and Bioenergy, 2013,55:355. https://linkinghub.elsevier.com/retrieve/pii/S0961953413000573

doi: 10.1016/j.biombioe.2013.02.008     URL    
[79]
Shen S, Cai B, Wang C, Li H, Dai G, Qin H . Applied Catalysis A: General, 2014,473:70. https://linkinghub.elsevier.com/retrieve/pii/S0926860X13007898

doi: 10.1016/j.apcata.2013.12.037     URL    
[80]
Martínez J J, Nope E, Rojas H, Cubillos J, Sathicq Á G, Romanelli G P . Catalysis Letters, 2014,144(7):1322. 766ef3b6-2094-4fd5-90dd-840ca05c8cf3http://dx.doi.org/10.1007/s10562-014-1267-8

doi: 10.1007/s10562-014-1267-8     URL    
[81]
Liao L, Liu Y, Li Z, Zhuang J, Zhou Y, Chen S . RSC Advances, 2016,6(97):94976. http://xlink.rsc.org/?DOI=C6RA17932K

doi: 10.1039/C6RA17932K     URL    
[82]
Karimi B, Mirzaei H M, Farhangi E . ChemCatChem, 2014,6(3):758. 9f686250-e2e8-4034-abda-29e2e8997f91http://onlinelibrary.wiley.com/doi/10.1002/cctc.201301081/abstract

doi: 10.1002/cctc.201301081     URL    
[83]
Zhang P, Han Q, Fan M, Jiang P . Applied Surface Science, 2014,317:1125. 36b1b7cb-c98f-4aa8-a403-ea66b2b63149http://dx.doi.org/10.1016/j.apsusc.2014.09.043

doi: 10.1016/j.apsusc.2014.09.043     URL    
[84]
Liu C, Lv P, Yuan Z, Yan F, Luo W . Renewable Energy, 2010,35(7):1531. 08180106-7d71-49d2-8ed7-36c6a3c78493http://www.sciencedirect.com/science/article/pii/S0960148109004352

doi: 10.1016/j.renene.2009.10.009     URL    
[85]
Liu K, Wang R, Yu M . Renewable Energy, 2018,127:531. https://linkinghub.elsevier.com/retrieve/pii/S0960148118305172

doi: 10.1016/j.renene.2018.04.092     URL    
[86]
Wang Y, Fang Z, Yang X, Yang Y, Luo J, Xu K, Bao G . Chemical Engineering Journal, 2018,348:929. https://linkinghub.elsevier.com/retrieve/pii/S1385894718308283

doi: 10.1016/j.cej.2018.05.039     URL    
[87]
Xie W, Han Y, Wang H . Renewable Energy, 2018,125:675. https://linkinghub.elsevier.com/retrieve/pii/S0960148118303057

doi: 10.1016/j.renene.2018.03.010     URL    
[88]
Wu H, Liu Y, Zhang J, Li G . Bioresource Technolo-gy, 2014,174:182
[89]
Hu S, Guan Y, Wang Y, Han H . Applied Energy, 2011,88(8):2685. b0bddd5c-f585-4d44-a0f3-e9fd592cb6edhttp://www.sciencedirect.com/science/article/pii/S0306261911001115

doi: 10.1016/j.apenergy.2011.02.012     URL    
[90]
Lin L, Vittayapadung S, Li X, Jiang W, Shen A X . Environmental Progress & Sustainable Energy, 2012,32(4):1255.
[91]
Xue B, Luo J, Zhang F, Fang Z . Energy, 2014,68:584. e4c363e2-4783-4cb1-a2c9-dbb5df5f37f4http://dx.doi.org/10.1016/j.energy.2014.02.082

doi: 10.1016/j.energy.2014.02.082     URL    
[92]
Guo P, Huang F, Huang Q, Zheng C . Journal of the American Oil Chemists’ Society, 2012,89(3):497. http://doi.wiley.com/10.1007/s11746-011-1924-7

doi: 10.1007/s11746-011-1924-7     URL    
[93]
Dai Y, Wang Y, Chen C . Catalysis Communications, 2018,106:20. https://linkinghub.elsevier.com/retrieve/pii/S1566736717304740

doi: 10.1016/j.catcom.2017.12.002     URL    
[94]
Xie W, Huang M . Energy Conversion and Management, 2018,159:42. https://linkinghub.elsevier.com/retrieve/pii/S0196890418300219

doi: 10.1016/j.enconman.2018.01.021     URL    
[95]
Xie W, Han Y, Tai S . Fuel, 2017,210:83. https://linkinghub.elsevier.com/retrieve/pii/S0016236117310396

doi: 10.1016/j.fuel.2017.08.054     URL    
[96]
Salimi Z, Hosseini S A . Fuel, 2019,239:1204. https://linkinghub.elsevier.com/retrieve/pii/S0016236118320210

doi: 10.1016/j.fuel.2018.11.125     URL    
[97]
Mao X, Gong L, Xie L, Qian H, Wang X, Zeng H . Chemical Engineering Journal, 2019,358:869. https://linkinghub.elsevier.com/retrieve/pii/S1385894718320382

doi: 10.1016/j.cej.2018.10.089     URL    
[98]
Zhang H, Li H, Pan H, Liu X, Yang K, Huang S, Yang S . Energy Conversion and Management, 2017,138:45. https://linkinghub.elsevier.com/retrieve/pii/S0196890417300766

doi: 10.1016/j.enconman.2017.01.060     URL    
[99]
Trautmann M, Lang S, Traa Y . Fuel, 2015,151:102. https://linkinghub.elsevier.com/retrieve/pii/S0016236115000113

doi: 10.1016/j.fuel.2015.01.006     URL    
[1] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[2] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[3] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[4] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[5] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[6] 明魏娜, 王晓艳, 明永飞, 李金花, 陈令新. 核-壳型分子印迹聚合物的制备与应用[J]. 化学进展, 2016, 28(4): 552-563.
[7] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[8] 谭丽莎, 孙明洋, 胡运俊, 程丽华, 徐新华. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2147-2158.
[9] 李恬, 王祎龙, 郭方方, 时东陆. 复杂形貌磁性复合微球制备及其生物应用[J]. 化学进展, 2013, 25(12): 2053-2067.
[10] 潘宇, 历娜, 周润宏, 赵敏. 趋磁细菌纳米磁小体的研究与应用[J]. 化学进展, 2013, 25(10): 1781-1794.
[11] 祁辉, 朱艳红*, 徐辉碧, 杨祥良. 基于磁性氧化铁纳米粒的诊断治疗药物[J]. 化学进展, 2013, 25(04): 611-619.
[12] 李适, 李明慧, 翟尚儒*, 宋宇, 翟滨, 安庆大*. 磁性固体酸的设计制备及其催化应用[J]. 化学进展, 2013, 25(0203): 233-247.
[13] 李亦婧, 朱浩, 侯晨, 江宇, 李彦锋*. 热液法制备磁性纳米材料[J]. 化学进展, 2013, 25(0203): 276-287.
[14] 周丽, 邓慧萍*, 万俊力, 张瑞金. 石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能[J]. 化学进展, 2013, 25(01): 145-155.
[15] 李祥子, 魏先文. 磁性金属纳米管的制备、形成机理及潜在应用[J]. 化学进展, 2012, 24(11): 2143-2157.