English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 134-143 DOI: 10.7536/PC180447 前一篇   后一篇

• 综述 •

选择性油水分离材料

张俊, 韩磊, 曾渊, 田亮, 张海军**()   

  1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
  • 收稿日期:2018-05-07 修回日期:2018-06-16 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 张海军
  • 基金资助:
    国家自然科学基金面上项目(51672194); 国家自然科学基金面上项目(51872210); 湖北省自然科学基金创新群体项目(2017CFA004); 湖北省教育厅高等学校优秀中青年科技创新团队计划资助(T201602)

Selective Oil/Water Separation Materials

Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang**()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2018-05-07 Revised:2018-06-16 Online:2019-01-15 Published:2018-12-07
  • Contact: Haijun Zhang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(51672194); The work was supported by the National Natural Science Foundation of China(51872210); The Key Program of Natural Science Foundation of Hubei Province, China(2017CFA004); The Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(T201602)

水是人类赖以生存的基础,其重要性不言而喻。但是,当前水环境日益恶化,水污染日益加重,尤其是石油泄漏和有机污染物肆意排放给环境和生态系统造成了不可挽回的损害。因此,高效油水分离已成为亟待解决的问题。当前主要通过物理吸附、化学分散以及生物降解等方法进行油污清理;化学分散和生物降解法易对海洋环境造成二次污染,而物理吸附具有易于回收及无污染等优点。本文综述了近年来物理过滤和物理吸附油水分离材料的研究现状及尚待解决的难点,同时也展望了该领域未来研究的热点及发展方向。

Water resource is a prerequisite for the survival of human beings with a self-evident importance. In recent years, water environment continues to deteriorate and water pollution is becoming more and more severe, oil spillages and indiscriminate discharge of organic pollutants cause serious and irrecoverable damages to environment and ecosystems, and the way for effective separation of oil-water mixture is becoming an urgent problem. The frequently-used methods for oil/water separation are physical adsorption, chemical dispersion and biodegradation, in which chemical adsorption and biodegradation methods usually cause secondary pollution to the marine environment; and the physical adsorption material has the advantages of easily collection, pollution-free and so on. This article summarizes the research status of physical filtration and physical adsorption materials for oil/water separation, some related difficulties that remain to be solved are pointed out and its future researching focus and developing directions are proposed.

()
表1 部分低表面能有机物质的参数
Table 1 Surface energy data of some organic materials
图1 固体表面液滴的接触角示意图:(a)Young模型;(b)Wenzel模型;(c)Cassie模型
Fig.1 Schematic illustration of contact angle of a liquid drop on a solid surface: (a)Young model, (b) Wenzel model, and (c)Cassie model
图2 基体铜网的SEM图片(ac);氧化后铜网的SEM图片(df);棕榈酸改性后的铜网SEM图片(gi)[42]
Fig.2 SEM image of the raw Cu mesh (ac); SEM image of the oxidized CuO mesh (df); PA modified CuO mesh (gi)[42]
图3 通过诱导相转变制备超疏水且超亲油聚偏氟乙烯膜的合成示意图(a),聚偏氟乙烯膜的SEM图片(bd)[51]
Fig.3 Schematic illustration of the formation of a superhydrophobic/superoleophilic polyvinylidene fluoride membrane via a modified phase inversion process(a), and SEM images of the membrane with different magnification (bd)[51]
图4 沙粒的SEM图片(ac),二氯乙烷和石油醚的液滴在沙层表面的润湿性(d,e)[57]
Fig.4 SEM images of the sand particles(ac), the wettability of heavy oil (1,2-dichloroethan) droplet and light oil (petroleum ether) droplet on a layer of sand in water medium(d,e)[57]
图5 超疏水性Fe3O4@PDA@Ag纳米颗粒的合成示意图和TEM图片[60]
Fig.5 Schematic illustration of synthesis procedures for superhydrophobic Fe3O4 @PDA@Ag NPs and corresponding TEM images[60]
图6 200 ℃/-196 ℃处理1 h后改性三聚氰胺海绵表面润湿性的变化[69]
Fig.6 Photographs of water droplets on the surface of the superhydrophobic melaminesponges before and after low/high temperature exposure for 1 h[69]
图7 多孔吸附材料油水分离过程示意图[71]
Fig.7 Equivalent schematic representation of porous hydrophobic/oleophilic materials on oil-water mixture[71]
图8 原棉中纤维素的SEM图片(a),碳纤维气凝胶的SEM图片(b),碳纤维气凝胶表面水滴的照片(c),碳纤维气凝胶浸入水中时的镜面反射现象(d)[75]
Fig.8 SEM image of the cellulose fibers in raw cotton (a), SEM image of twisted carbon fibers aerogel (b), photograph of a water droplet supported on a twisted carbon fibers aerogel (c) and mirror-reflection of a twisted carbon fibers aerogel immersed into water (d)[75]
[1]
Joye S B . Science, 2015,349(6248):592.
[2]
Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C . Environmental Science Processes & Impacts, 2015,17(7):1201.
[3]
Nisticò R, Franzoso F, Cesano F, Scarano D, Magnacca G, Parolo M E, Carlos L . ACS Sustainable Chemistry & Engineering, 2017,5(1):793.
[4]
Li Y, Zhang Z, Wang M, Men X, Xue Q . Journal of Materials Chemistry A, 2017,5(10):5077.
[5]
Ge J, Zhao H Y, Zhu H W, Huang J, Shi L A, Yu S H . Advanced Materials, 2016,28(47):10459.
[6]
Ma Q, Cheng H, Fane A G, Wang R, Zhang H . Small, 2016,12(16):2186.
[7]
Xia B B, Liu H T, Fan Y N, Chen T C, Chen C, Wang B . Materials & Design, 2017,135:51.
[8]
Wang Z, Guo Z . Chemical Communications, 2017,53(4):12990.
[9]
Wang K, Wang Z, Dong Y, Zhang S, Li J . Polymers, 2017,9(8):347.
[10]
Tang X, Shen C, Zhu W, Zhang S, Xu Y, Yang Y, Gao M, Dong F . RSC Advances, 2017,7(48):30495.
[11]
Emelyanenko A M, Boinovich L B, Bezdomnikov A A, Chulkova E V, Emelyanenko K A . ACS Applied Materials & Interfaces, 2017,9(28):24210.
[12]
Chen L, Guo Z, Liu W . Journal of Materials Chemistry A, 2017,5(28):14480.
[13]
詹晓力 ( Zhan X L), 金碧玉 (Jin B Y), 张庆华 (Zhang Q H), 陈丰秋 (Chen F Q) . 化学进展( Progress in Chemistry), 2018,1:87.
[14]
Zhang T, Kong L, Dai Y, Yue X, Rong J, Qiu F, Pan J . Chemical Engineering Journal, 2017,309:7.
[15]
Li H, Yu S, Han X . Chemical Engineering Journal, 2016,283:1443.
[16]
Ebihara Y, Ota R, Noriki T, Shimojo M, Kajikawa K . Scientific Reports, 2015,5:15992.
[17]
Lai C Y, Tang T C, Amadei C A, Marsden A J, Verdaguer A, Wilson N, Chiesa M . Carbon, 2014,80:784.
[18]
Jiang H B, Liu Y Q, Zhang Y L, Liu Y, Fu X Y, Han D D, Song Y Y, Ren L, Sun H B . ACS Applied Materials & Interfaces, 2018,10(21):18416.
[19]
Sanchez-Valencia J R, Dienel T, Groning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R . Nature, 2014,512(7512):61.
[20]
Yong G K, Lim N, Kim J, Kim C, Lee J, Kwon K H . Applied Surface Science, 2017.
[21]
Razmjou A, Arifin E, Dong G, Mansouri J, Chen V . Journal of Membrane Science, 2012,415/416(10):850.
[22]
Coulson S R, And I S W, Badyal J P S, And S A B, Willis C . Chemistry of Materials, 2000,12(7):2031.
[23]
Yamada Y, Yamada T S, Tasaka A, Inagaki N . Macromolecules, 1996,29(12):4331.
[24]
Cao S, Qiu F, Xiong C, Wang X, Zhang G, Long S, Yang J . Journal of Applied Polymer Science, 2018,135(12):45923.
[25]
Ge J, Zong D, Jin Q, Yu J, Ding B . Advanced Functional Materials, 2018,28(10):1705051.
[26]
Jing P, Zhang S Y, Chen W, Wang L, Shi W, Cheng P . Chemistry- A European Journal, 2018,24(15):3754.
[27]
Saththasivam J, Yiming W, Wang K, Jin J, Liu Z . Scientific Reports, 2018,8(1):7418.
[28]
Kong L H, Chen X H, Yu L G, Wu Z S, Zhang P Y . ACS Appl Mater Interfaces, 2015,7(4):2616.
[29]
Gao X, Zhou J, Du R, Xie Z, Deng S, Liu R, Liu Z, Zhang J . Advanced Materials, 2016,28(1):168.
[30]
Li F, Wang Z, Huang S, Pan Y, Zhao X . Advanced Functional Materials, 2018,1706867.
[31]
Liu Y, Su Y, Guan J, Cao J, Zhang R, He M, Gao K, Zhou L, Jiang Z . Advanced Functional Materials, 2018,28(13):1706545.
[32]
Xu Z, Wang L, Yu C, Li K, Tian Y, Jiang L . Advanced Functional Materials, 2018,28(5):1703970.
[33]
Lv W, Mei Q, Xiao J, Du M, Zheng Q . Advanced Functional Materials, 2017,27(48):1704293.
[34]
Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y . Advanced Materials, 2018,30(9).
[35]
王正烈 (Wang Z L), 周亚平 (Zhou Y P), 李松林 (Li S L), 刘俊吉 (Liu J J) .物理化学下册第四版 (Physical Chemistry (Forth Edition)). 北京:高等教育出版社( Beijing: Higher Education Press), 2001. 12.
[36]
Young T . Philosophical Transactions of the Royal Society of London, 1805,95:65.
[37]
Wenzel R N . Indengchem, 1936,28(8):988.
[38]
Cassie A B D, Baxter S . Trans Faraday Soc., 1944,40(1):546.
[39]
曾新娟 (Zeng X J), 王丽 (Wang L), 皮丕辉 (Pi P H), 程江 (Cheng J), 文秀芳 (Wen X F), 钱宇 (Qian Y) . 化学进展( Progress in Chemistry), 2018,30(1):73.
[40]
Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D . Angewandte Chemie, 2010,43(15):2012.
[41]
Wang C F, Tzeng F S, Chen H G, Chang C J . Langmuir the ACS Journal of Surfaces & Colloids, 2012,28(26):10015.
[42]
Wang F, Lei S, Xue M, Ou J, Li C, Li W . Journal of Physical Chemistry C, 2014,118(12):6344.
[43]
Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhou X . Journal of Materials Chemistry, 2012,22(7):2834.
[44]
Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L . Advanced Materials, 2013,25(30):4192.
[45]
Liu X, Ge L, Li W, Wang X, Li F . ACS Appl Mater Interfaces, 2015,7(1):791.
[46]
Chen Q, Yu Z, Li F, Yang Y, Pan Y, Peng Y, Yang X, Zeng G . Journal of Chemical Technology and Biotechnology, 2018,93(3):761.
[47]
Lee W, Ahn Y . Bulletin of the Korean Chemical Society, 2017,38(12):1503.
[48]
Wang J, Chen Y . Journal of Applied Polymer Science, 2015,132(39):42614.
[49]
Li J, Yan L, Zhao Y, Zha F, Wang Q, Lei Z . Physical Chemistry Chemical Physics, 2015,17(9):6451.
[50]
Wang B, Li J, Wang G, Liang W, Zhang Y, Shi L, Guo Z, Liu W . ACS Appl Mater Interfaces, 2013,5(5):1827.
[51]
Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L . Advanced Materials, 2013,25(14):2071.
[52]
Chen B, Ma Q, Tan C, Lim T T, Huang L, Zhang H . Small, 2015,11(27):3319.
[53]
Reddy D H K, Yun Y S . Coordination Chemistry Reviews, 2016,315:90.
[54]
Li X, Yu J, Wageh S, Al-Ghamdi A A, Xie J . Small, 2016,12(48):6640.
[55]
Arbatan T, Fang X, Wei S . Chemical Engineering Journal, 2011,166(2):787.
[56]
Akhavan B, Jarvis K, Majewski P . ACS Appl Mater Interfaces, 2013,5(17):8563.
[57]
Yong J, Chen F, Yang Q, Bian H, Du G, Shan C, Huo J, Fang Y, Hou X . Advanced Materials Interfaces, 2016,3(7):1500650.
[58]
Kumar A, Sharma G, Mu N, Thakur S . Chemical Engineering Journal, 2015,280:175.
[59]
Duan C, Zhu T, Guo J, Wang Z, Liu X, Wang H, Xu X, Jin Y, Zhao N, Xu J . ACS Applied Materials & Interfaces, 2015,7(19):10475.
[60]
Wang B, Liu Y, Zhang Y, Guo Z, Zhang H, Xin J H, Zhang L . Advanced Materials Interfaces, 2015,2(13):1500234.
[61]
Ning C, Qian L, Jin L, Yong W, Bai Y, Szunerits S, Boukherroub R . Chemical Engineering Journal, 2017,326:17.
[62]
Wan W, Lin Y, Prakash A, Zhou Y . Journal of Materials Chemistry A, 2016,4(48):18687.
[63]
Shen Y, Li L, Xiao K, Xi J . ACS Sustainable Chemistry & Engineering, 2016,4(4):2351.
[64]
Gupta S, Tai N H . Journal of Materials Chemistry A, 2016,4(5):1550.
[65]
Fard A K, Rhadfi T, Mckay G, Al-Marri M, Abdala A, Hilal N, Hussien M A . Chemical Engineering Journal, 2016,293:90.
[66]
Cao X, Zang L, Bu Z, Sun L, Guo D, Wang C . Journal of Materials Chemistry A, 2016,4(27):10479.
[67]
Ma W, Zhang Q, Hua D, Xiong R, Zhao J, Rao W, Huang S, Zhan X, Chen F, Huang C . RSC Advances, 2016,6(16):12868.
[68]
Shuai Q, Yang X, Luo Y, Tang H, Luo X, Tan Y, Ma M . Materials Chemistry & Physics, 2015,162:94.
[69]
Ruan C, Ai K, Li X, Lu L . Angew. Chem. Int. Ed., 2014,126(22):5662.
[70]
Ge J, Shi L A, Wang Y C, Zhao H Y, Yao H B, Zhu Y B, Zhang Y, Zhu H W, Wu H A, Yu S H . Nature Nanotechnology, 2017,12(5):434.
[71]
Ge J, Ye Y D, Yao H B, Zhu X, Wang X, Wu L, Wang J L, Ding H, Yong N, He L H . Angewandte Chemie International Edition, 2014,53(14):3612.
[72]
Bi H, Xie X, Yin K, Zhou Y, Wan S, Ruoff R, Sun L . Journal of Materials Chemistry A, 2014,2(6):1652.
[73]
Sun H, Xu Z, Gao C . Advanced Materials, 2013,25(18):2554.
[74]
Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K . ACS Sustainable Chemistry & Engineering, 2014,2(6):1492.
[75]
Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X . Advanced Materials, 2013,25(41):5916.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[3] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[7] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[8] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[11] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[14] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[15] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
阅读次数
全文


摘要

选择性油水分离材料