English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1863-1873 DOI: 10.7536/PC180425 前一篇   后一篇

• 综述 •

仿生微纳米纤维黏附材料

周晨, 吴俊涛*   

  1. 北京航空航天大学化学学院 仿生智能界面科学与技术教育部重点实验室 北京 100191
  • 收稿日期:2018-04-12 修回日期:2018-04-25 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 吴俊涛 E-mail:wjt@buaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51673009,51373007)、国家重点研发计划项目(No.2016YFC0303700)、中央高校基本科研业务费专项资金和教育部留学回国人员科研启动基金资助

Bioinspired Micro-Nano Fibrous Adhesion Materials

Chen Zhou, Juntao Wu*   

  1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
  • Received:2018-04-12 Revised:2018-04-25 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51673009,51373007),the National Key Research and Development Program of China(No. 2016YFC0303700), the Fundamental Research Funds for the Central Universities, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
自然界中功能与结构相统一的生物材料是人类社会创新的灵感源泉。在众多具有优异性能的生物材料中,具有特殊黏附性能的生物微纳米纤维一直是仿生研究领域的热点之一。生物微纳米纤维黏附现象是自然界中存在的一类奇特的现象,众多具有特殊黏附性质和功能的生物微纳米纤维材料在生物运动、防御和猎物捕获等方面都具有重要的作用。生物微纳米纤维黏附主要包括纤维尖端的黏附和表面的黏附,如壁虎脚刚毛尖端的黏附和蜘蛛丝表面的黏附。研究表明生物微纳米纤维黏附作用主要来源于其特殊的微纳米结构和表面性质。受自然界中具有特殊黏附性能的生物微纳米纤维启发,人们设计和开发了众多性能优异的仿生微纳米纤维黏附材料。微纳米纤维黏附材料在干态粘胶、高效集水和空气过滤等领域都具有重要的应用价值。本文综述了壁虎脚刚毛、蜘蛛丝等生物微纳米纤维的黏附机理及其相应仿生材料的研究进展,并对该领域未来的发展方向作了展望。
Biological materials that are unified in function and structure in the natural world are the inspirations source of innovation for human society. Among the numerous biological materials with excellent performance,biological micro-nano fibers with unique adhesion properties have always been one of the hotspots in the fields of bionics research. The adhesion of biological micro-nano fibers is a peculiar phenomenon in nature. Numerous biological fibrous materials with special adhesion properties and functions play an important role in biological movement, defense, prey capture and other aspects. The adhesion of biological micro-nano fibers mainly includes adhesion on fiber tip, like gecko foot seta tip, and adhesion on fiber surface, like spider silk surface. It is found that such adhesion mainly comes from the special micro-nano structures and surface properties of micro-nano fibers. Inspired by the adhesive biological fibers, many excellent artificial micro-nano fibrous adhesion materials have been designed and developed. Micro-nano fibrous adhesion materials have a wide variety of practical applications in dry adhesive, high efficiency water capturing, air filtration and other fields. In this paper, the recent researches on adhesion mechanism of biological micro-nano fibers and the corresponding bioinspired materials are introduced, with a focus on gecko foot seta and spider silk. Meanwhile, the future development trend of this field is also proposed.
Contents
1 Introduction
2 Adhesion on tip of micro-nano fibers
2.1 Micro-nano fibrillar structures of animals adhesion toes
2.2 The hierarchical micro-nano fibrous structures and adhesion mechanisms of gecko foot
2.3 Bioinspired micro-nano fibrous array adhesion materials
3 Adhesion on surface of micro-nano fibers
3.1 Adhesion phenomena and mechanisms on surface of spider silk
3.2 Fabrications and applications of micro-nano fibrous adhesion materials inspired by spider silk
4 Conclusion

中图分类号: 

()
[1] Zhang C, Mcadams D A, Grunlan J C. Adv. Mater., 2016, 28:6292.
[2] Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat. Mater., 2015, 14:23.
[3] Liu K, Jiang L. Nano Today, 2011, 6:155.
[4] Jiao J, Zhang F, Jiao T, Gu Z, Wang S. Adv. Sci., 2018,5:1700787.
[5] Gu Z, Li S, Zhang F, Wang S. Adv. Sci., 2016, 3:1500327.
[6] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Nature, 2000, 405:681.
[7] Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Proc. Natl. Acad. Sci., 2002, 99:12252.
[8] Boesel L F, Greiner C, Arzt E, Campo A D. Adv. Mater., 2010, 22:2125.
[9] Li Y, Krahn J, Menon C. J. Bionic. Eng., 2016, 13:181.
[10] Gong G, Zhou C, Wu J, Jin X, Jiang L. ACS Nano, 2015, 9:3721.
[11] Wang C, Wu S, Jian M, Xie J, Xu L, Yang X, Zheng Q, Zhang Y. Nano Res., 2016, 9:1.
[12] Song C, Zhao L, Zhou W, Zhang M, Zheng Y. J. Mater. Chem. A, 2014, 2:9465.
[13] Zhang R, Zhang Y, Zhang Q, Xie H, Wang H, Nie J, Wen Q, Wei F. Nat. Commun., 2013, 4:1727.
[14] Zhang R, Jing J, Tao J, Hsu S C. Atmos. Chem. Phys., 2013, 13:7053.
[15] Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F. Nature, 2014, 514:218.
[16] Li H, Wang Q G, Yang M, Li F, Wang J, Sun Y, Wang C, Wu H, Qian X. Atmos. Res., 2016, 181:288.
[17] Zhang R, Liu C, Zhou G, Sun J, Liu N, Hsu P C, Wang H, Qiu Y, Zhao J, Wu T. Nano Res., 2017, 1.
[18] Zhang R, Liu C, Hsu P C, Zhang C, Liu N, Zhang J, Lee H R, Lu Y, Qiu Y, Chu S. Nano Lett., 2016, 16:3642.
[19] Xu J, Liu C, Hsu P C, Liu K, Zhang R, Liu Y, Cui Y. Nano Lett., 2016, 16:1270.
[20] Zuo F, Zhang S, Liu H, Fong H, Yin X, Yu J, Ding B. Small, 2017, 13:1702139.
[21] Zhang R, Liu B, Yang A, Zhu Y, Liu C, Zhou G, Sun J, Hsu P C, Zhao W, Lin D. Nano Lett., 2018, 18:1130.
[22] Arzt E, Gorb S, Spolenak R. Proc. Natl. Acad. Sci., 2003, 100:10603.
[23] Eisner T, Aneshansley D J. Proc. Natl. Acad. Sci., 2000, 97:6568.
[24] Kesel A B, Martin A, Seidl T. Smart Mater. Struct., 2004, 13:512.
[25] Autumn K. Am. Sci., 2006, 94:124.
[26] Zhou M, Pesika N, Zeng H, Tian Y, Israelachvili J. Friction, 2013, 1:114.
[27] Hansen W R, Autumn K. Proc. Natl. Acad. Sci., 2005, 102:385.
[28] Rizzo N W, Gardner K H, Walls D J, Keiper-Hrynko N M, Ganzke T S, Hallahan, L D. J. R. Soc. Interface, 2006, 3:441.
[29] Huber G, Gorb S, Arzt E, Spolenak R, Mecke K, Mantz H, Jacobs K. Proc. Natl. Acad. Sci., 2005, 102:16293.
[30] Gao H, Wang X, Yao H, Gorb S, Arzt E. Mech. Mater., 2005, 37:275.
[31] Bhushan B. J. Adhesion Sci. Technol., 2007, 21:1213.
[32] Xu Q, Wan Y, Hu T S, Liu T X, Tao D, Niewiarowski P H, Tian Y, Liu Y, Dai L, Yang Y. Nat. Commun., 2015, 6:8949.
[33] Sameoto D, Menon C. Smart Mater. Struct., 2010, 19:103001.
[34] Kwak M K, Pang C, Jeong H E, Kim H N, Yoon H, Jung H S, Suh K Y. Adv. Funct. Mater., 2011, 21:3606.
[35] Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Adv. Mater., 2003, 2:461.
[36] Greiner C, Campo A D, Arzt E. Langmuir, 2007, 23:3495.
[37] Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U. Science, 2002, 296:1997.
[38] Dong Y L, Lee D H, Lee S G, Cho K. Soft Matter, 2012, 8:4905.
[39] Zhang E, Liu Y, Yu J, Lv T, Li L. J. Mater. Chem. B, 2015, 3:6571.
[40] Ge L, Sethi S, Ci L, Ajayan P M, Dhinojwala A. Proc. Natl. Acad. Sci., 2007, 104:10792.
[41] Qu L, Dai L, Stone M, Xia Z, Wang Z L. Science, 2008, 322:238.
[42] Qu L, Dai L. Adv. Mater., 2007, 19:3844.
[43] Hu S, Xia Z, Dai L. Nanoscale, 2013, 5:475.
[44] Li Y, Zhang H, Yao Y, Li T, Zhang Y, Li Q, Dai Z. RSC Adv., 2015, 5:46749.
[45] Xu M, Futaba D N, Yamada T, Yumura M, Hata K. Science, 2010, 330:1364.
[46] Murphy M P, Kim S, Sitti M. ACS Appl. Mater. Interfaces, 2009, 1:849.
[47] Ho A Y Y, Yeo L P, Lam Y C, Rodríguez I. ACS Nano, 2011, 5:1897.
[48] Rong Z, Zhou Y, Chen B, Robertson J, Federle W, Hofmann S, Steiner U, Goldberg-Oppenheimer P. Adv. Mater., 2014, 26:1456.
[49] Campo A D, Christian Greiner A, Arzt E. Langmuir, 2007, 23:10235.
[50] Campo A d, Greiner C, Álvarez I, Arzt E. Adv. Mater., 2007, 19:1973.
[51] Xue L, Kovalev A, Thöle F, Rengarajan G T, Steinhart M, Gorb S N. Langmuir, 2012, 28:10781.
[52] Lee H, Lee B P, Messersmith P B. Nature, 2007, 448:338.
[53] Seong M, Jeong C, Yi H, Park H H, Bae W G, Park Y B, Jeong H E. Appl. Surf. Sci., 2017, 413:275.
[54] Xue L, Kovalev A, Eichler-Volf A, Steinhart M, Gorb S N. Nat. Commun., 2015, 6:6621.
[55] Xue L, Kovalev A, Dening K, Eichler-Volf A, Eickmeier H, Haase M, Enke D, Steinhart M, Gorb S N. Nano Lett., 2013, 13:5541.
[56] Rd R D, Parness A, Spenko M. J. R. Soc. Interface, 2014, 11:20131089.
[57] Krahn J, Sameoto D, Menon C. Smart Mater. Struct., 2011, 20:015014.
[58] Drotlef D M, Blümler P, Campo A D. Adv. Mater., 2014, 26:775.
[59] Cui J, Drotlef D M, Larraza I, Fernándezblázquez J P, Boesel L F, Ohm C, Mezger M, Zentel R, Del C A. Adv. Mater., 2012, 24:4601.
[60] Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L. Adv. Mater., 2010, 17:1977.
[61] Liu K, Du J, Wu J, Jiang L. Nanoscale, 2012, 4:768.
[62] Gosline J M, Demont M E, Denny M W. Endeavour, 1986, 10:37.
[63] Lewis† R V. Chem. Rev., 2006, 106:3762.
[64] Gosline J M, Guerette P A, Ortlepp C S, Savage K N. J. Exp. Biol., 1999, 202:3295.
[65] Humenik M, Scheibel T, Smith A. Prog. Mol. Biol. Transl. Sci., 2011, 103:131.
[66] Sahni V, Blackledge T A, Dhinojwala A. Nat. Commun., 2010, 1:19.
[67] Sahni V, Labhasetwar D V, Dhinojwala A. Langmuir, 2012, 28:2206.
[68] Amarpuri G, Chaurasia V, Jain D, Blackledge T A, Dhinojwala A. Sci. Rep., 2015, 5:9030.
[69] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463:640.
[70] Shi Q, Wan K T, Wong S C, Chen P, Blackledge T A. Langmuir, 2010, 26:14188.
[71] Shi Q, Wong S C, Ye W, Hou J, Zhao J, Yin J. Langmuir, 2012, 28:4663.
[72] Stachewicz U, Hang F, Barber A H. Langmuir, 2014, 30:6819.
[73] Bronikowski M J, Willis P A, Colbert D T, Smith K A, Smalley R E. J. Vacuum Sci. Technol. A, 2001, 19:1800.
[74] Cao M, Wang Y, Guo C, Qi Y, Hu C. Langmuir, 2004, 20:4784.
[75] Medeiros E S, Glenn G M, Klamczynski A P, Orts W J, Mattoso L H C. J. Appl. Polym. Sci., 2009, 113:2322.
[76] Li D, Xia Y. Adv. Mater., 2004, 16:1151.
[77] Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46:5670.
[78] Liu C, Hsu P C, Lee H W, Ye M, Zheng G, Liu N, Li W, Cui Y. Nat. Commun., 2015, 6:6205.
[79] Li Q, Xu Y, Wei H, Wang X. RSC Adv., 2016, 6:65275.
[80] Zhang Y, Shuai Y, Xiao F, Li H, Zhou J, Wang B. J. Am. Chem. Soc., 2016, 138:5785.
[81] Chen Y, Zhang S, Cao S, Li S, Chen F, Yuan S, Xu C, Zhou J, Feng X, Ma X. Adv. Mater., 2017, 29:1606221.
[82] Souzandeh H, Johnson K S, Yu W, Bhamidipaty K, Zhong W H. ACS Appl. Mater. Interfaces, 1944, 8:20023.
[83] Kim J, Hong S C, Bae G N, Jung J. Environ. Sci. Technol., 2017, 51:11967.
[84] Cheng Y, Wang C, Zhong J, Lin S, Xiao Y, Zhong Q, Jiang H, Wu N, Li W, Chen S. Nano Energy, 2017, 34:562.
[85] Zhao L, Song C, Zhang M, Zheng Y. Chem. Commun. RSC, 2014, 50:10651.
[86] Song C, Du R, Zheng Y. Materials, 2015, 8:4249.
[87] Zhang R, Ning Z, Zhang Y, Xie H, Zhang Q, Qian W, Chen Q, Wei F. Nanoscale, 2013, 5:6584.
[88] Jian M, Xie H, Wang Q, Xia K, Yin Z, Zhang M, Deng N, Wang L, Ren T, Zhang Y. Nanoscale, 2016, 8:13437.
[1] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[2] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[3] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[4] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[5] 刘彩锋, 刘中云, 胡云霞. 抗菌分离膜的构建策略及其发展方向[J]. 化学进展, 2017, 29(11): 1395-1406.
[6] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[7] 刘娟, 杨青林*, 徐晶晶, 刘克松*, 郭林, 江雷. 仿壁虎和贻贝黏附材料[J]. 化学进展, 2012, (10): 1946-1954.
[8] 欧阳健明 杨如娥 谈金. 肾上皮细胞损伤对草酸钙形成和黏附的影响*[J]. 化学进展, 2010, 22(08): 1665-1671.
[9] 刘定斌,谢赟燕,邵华武,蒋兴宇. 利用表面上的小分子控制细胞黏附[J]. 化学进展, 2007, 19(012): 1965-1971.
[10] 周官强,陈新,邵正中. 基于动物丝蛋白的人工纺丝*[J]. 化学进展, 2006, 18(0708): 933-938.
阅读次数
全文


摘要

仿生微纳米纤维黏附材料