English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1395-1406 DOI: 10.7536/PC170419 前一篇   后一篇

• 综述 •

抗菌分离膜的构建策略及其发展方向

刘彩锋2,3, 刘中云1,3*, 胡云霞1,3*   

  1. 1. 天津工业大学膜材料与膜过程国家重点实验室 天津 300387;
    2. 烟台大学化学化工学院 烟台 264005;
    3. 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室 山东省环境工程研究中心 烟台 264003
  • 收稿日期:2017-04-13 修回日期:2017-08-31 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 胡云霞,e-mail:lucyyunxia@hotmail.com;刘中云,e-mail:zhongyunliu@yic.ac.cn E-mail:lucyyunxia@hotmail.com;zhongyunliu@yic.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21476249)和山东省重点研发计划项目(No.2014GHY115021)资助

The Construction of Antibacterial Filtration Membranes:Current Strategies and Future Prospects

Caifeng Liu2,3, Zhongyun Liu1,3*, Yunxia Hu1,3*   

  1. 1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China;
    2. College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
    3. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
  • Received:2017-04-13 Revised:2017-08-31 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476249) and the Key Project of Shandong Province (No. 2014GHY115021).
膜分离技术具有能耗比较低、可常温运行、适用对象广泛、装置简单、易于自动控制和环境友好等优点,目前已普遍用于污水处理、海水淡化、电子、化工、医药等领域。然而在膜技术工程化应用过程中存在的膜污染问题,尤其是不可逆的微生物污染,严重影响了分离膜分离性能和使用寿命,进而影响分离过程的持续性和经济性。本文从分离膜微生物污染的角度出发,总结归纳微生物污染的形成过程及特点,并针对微生物污染问题,着重论述了国内外抗菌分离膜的研究现状,详细介绍了被动抗黏附型、主动杀伤型及程序式复合型三类抗菌策略,对其制备方法、抗菌机理以及存在问题进行了阐述与分析,在此基础上,进一步探讨了抗菌分离膜的未来发展趋势。
Membrane-based separation technologies, as one of the most effective and efficient technologies, have been widely used in many fields including wastewater treatment, seawater desalination, electronic, chemical and pharmaceutical industries, etc. due to their inherent advantages such as energy-saving and cost-effective features. Membrane fouling, however, especially the irreversible biofouling, has strong negative effects on the operational sustainability and the cost-efficiency of membrane process, thus hampering the application of membrane technology. In this review, the formation process and features of membrane biofouling are summerized, and then recent advances of antibacterial membranes development are reviewed. Three strategies including anti-adhesion strategy, active antibacterial strategy and programmed combination antibacterial strategy are highlighted for mitigating the membrane biofouling. In particular, the preparation method, antibacterial mechanism as well as practical problems of these three strategies are comprehensively discussed and analyzed. Finally, the future prospect and new insights are proposed to develop antibacterial membrane for future work.
Contents
1 Introduction
2 The formation process, characteristics and harmfulness of microbial fouling
3 The construction strategies of filtration membranes with antibacterial performance
3.1 The construction strategies of anti-adhesive filtration membranes with biofouling resistance
3.2 The construction strategies of active anti-bacterial filtration membranes with biofouling resistance
3.3 The construction strategies of programmed combination antibacterial filtration membranes with biofouling resistance
4 Conclusion and outlook

中图分类号: 

()
[1] Werber J R, Osuji C O, Elimelech M.Nat. Rev. Mater., 2016, 1(5):16018.
[2] Rana D, Matsuura T.Chem. Rev.,2010, 110:2448.
[3] Wang Z W, Ma J X, Tang C Y, Kimura K, Wang Q Y, Han X M. J. Membr. Sci., 2014, 468:276.
[4] Kang G D, Cao Y M.Water Res., 2012, 46(3):584.
[5] Lee N H, AmyG, Croué J P, Buisson H.Water Res., 2004, 38(20):4511.
[6] Kim D I, Kim J, Shon H K, Hong S.J. Membr. Sci., 2015, 483:34.
[7] Bernstein R, Belfer S, Freger V. Environ. Sci. Technol.,2011, 45(14):5973.
[8] Madhavan P, Hong P Y, Sougrat R, Nunes S P.ACS Appl. Mater. Interfaces, 2014, 6(21):18497.
[9] Davey M E, O'Toole G A. Microbiol. Mol. Biol. Rev., 2000, 64:847.
[10] de Faria A F, Martinez D S T,Meira S M M, de Moraes A C M,Brandelli A,Filho A G S, Alves O L. Colloids Surf., B, 2014, 113:115.
[11] van Houdt R, Michiels C W. Res. Microbiol., 2005, 156:626.
[12] 徐志康(Xu Z K), 王芳(Wang F), 仰云峰(Yang Y F). 膜科学与技术(Membrane Science and Technology), 2011, 3:69.
[13] 郑猛(Zheng M), 吴青芸(Wu Q Y), 周浩媛(Zhou H Y), 胡云霞(Hu Y X).膜科学与技术(Membrane Science and Technology), 2015, 1:123.
[14] Xu Z H, Ye S J, Zhang G L, Li W B, Gao C J, Shen C,Meng Q.J. Membr. Sci., 2016, 509:83.
[15] Piyadasa C, Ridgway H F, Yeager T R, Stewart M B PelekaniC, GrayS R. Orbell J D.Desalination, 2017, 418:19.
[16] Miller D J,Araujo P A, Correia P B, Ramsey M M, Kruithof J C, van Loosdrecht M C M, Freeman B D, Paul D R,Whiteley M,Vrouwenvelder J S. Water Res., 2012, 46(12):3737.
[17] Kim D G, Kang H, Han S, Kim H J, Lee J C.RSC Adv., 2013, 3:18071.
[18] Sileika T S, Kim H D,Maniak P,Messersmith P B.ACS Appl. Mater. Interfaces, 2011, 3(12):4602.
[19] Park K D, Kim Y S, Han D K, Kim Y H, Lee E H B,Suh H,Choi K S.Biomaterials, 1998, 19:851.
[20] Roosjen A,vander Mei H C,Busscher H J,Nord W. Langmuir, 2004, 20:10949.
[21] 刘红艳(Liu H Y),周健(Zhou J).化学进展(Progress in Chemistry), 2012, 11:2187.
[22] 慈吉良(Ci J L),康宏亮(Kang H L),刘晨光(Liu C G),贺爱华(He A H),刘瑞刚(Liu R G).化学进展(Progress in Chemistry), 2015, 9:1198.
[23] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K.J. Membr. Sci., 2010, 362(1/2):255.
[24] Brady R F, Singer I L.Biofouling, 2000, 15(1/3):73.
[25] Tsibouklis J, Graham P, Eaton P J, Smith J R,Nevell T G, Smart J D, Ewen R J. Macromolecules, 2000, 33:8460.
[26] Liu C X, Zhang D R, He Y, Zhao XS, Bai R B. J. Membr. Sci., 2010, 346:121.
[27] SaekiD, NagaoS, SawadaI,OhmukaiY, Maruyama T, Matsuyama H. J. Membr. Sci., 2013, 428:403.
[28] Liu F J, Qin B, HeL H, Song R. Carbohydr. Polym., 2009, 78(1):146.
[29] 朱军勇(Zhu J Y), 王琼柯(Wang Q K), 许欣(Xu X),刘绰绰(Liu Z Z), 刘金盾(Liu J D), 张亚涛(Zhang Y T). 工程科学(Chinese Journal of Engineering), 2014, 7:23.
[30] 杨皓程(Yang H C),陈一夫(Chen Y F),叶辰(Ye C),万灵书(Wang L S),徐志康(Xu Z K). 化学进展(Progress in Chemistry), 2015, 27(8):1014.
[31] Lin S, Chen L H, Huang LL, Cao S L, Luo X L, Liu K.Ind. Crops Prod., 2015, 70:395.
[32] Siedenbiedel F, Tiller J C. Polymers, 2012, 4(4):46.
[33] Carmona-Ribeiro A M, de Melo Carrasco L D.Int. J. Mol. Sci., 2013, 14(5):9906.
[34] 毛健康(Mao J K), 王灿(Wang C), 沈新元(Shen X Y). 膜科学与技术(Membrane Science and Technology), 2009, 5:44.
[35] Lewis K, Klibanov A M. Trends Biotechnol., 2005, 23(7):343.
[36] Bromberg L, Hatton T A. Polymer, 2007, 48(26):7490.
[37] Kenawy E R, Worley S D, Broughton R.Biomacromolecules, 2007, 8(5):1359.
[38] Meng J Q, Zhang X, Ni L, Tang Z, Zhang Y F, Zhang Y J, Zhang W. Desalination, 2015, 359:156.
[39] Nikkola J,Liu X,Li Y,Raulio M,Alakomi H L,Wei J,Tang C Y.J. Membr. Sci., 2013, 444:192.
[40] Rai M,Yadav A, Gade A. Biotechnol. Adv., 2009, 27(1):76.
[41] 邓尧(Deng Y), 黄肖容(Huang X R), 邬晓龄(Wu X L). 材料导报(Materials Review), 2012, 15:84.
[42] Rodrigues A G, Ping L Y,Marcato P D,Alves O L, Silva M C P, Ruiz R C,MeloI S,Tasic L,de Souza A O.Appl. Microbiol. Biotechnol., 2013, 97(2):775.
[43] Zodrow K, Brunet L, Mahendra S, Li D, Zhang A N, Li Q L, Alvarez P J J. Water Res., 2009, 43(3):715.
[44] Gunawan P, Guan C, Song X H, Zhang Q Y, Leong S S J,Tang C Y, Chen Y, Chan-Park M B, Chang M W, Wang K, Xu R.ACS Nano,2011, 5(12):10033.
[45] Li W R,Xie X B, Shi Q S, Zeng H Y, Ouyang Y S,Chen Y B.Appl. Microbiol. Biotechnol., 2010, 85(4):1115.
[46] Huang S Y.ACS Appl. Mater. Interfaces, 2014, 6:17144
[47] Karkhanechi H, Takagi R,Matsuyama H. Desalination, 2014,336:87.
[48] Xi Z Y,Xu Y Y, Zhu L P, Wang Y, Zhu B K.J. Membr. Sci., 2009, 327(1/2):244.
[49] Liu Z Y, Hu Y X.ACS Appl. Mater. Interfaces, 2016, 8(33):21666.
[50] Ben-Sasson M, Zodrow K R,Qi G G, Kang Y, Giannelis E P, Elimelech M. Environ. Sci. Technol., 2014, 48(1):384.
[51] Hong R, Kang T Y,Michels C A,Gadura N.Appl. Environ. Microbiol., 2012, 78(6):1776.
[52] Grass G,Rensing C,Solioz M.Appl. Environ. Microbiol.,2011, 77(5):1541.
[53] Xu Z H, Ye S J, Fan Z, Ren F H, Gao C J, Li Q B, Li G Q, Zhang G L. J.Nanopart Res., 2015, 17:409.
[54] Karkhanechi H, Takagi R,Ohmukai Y, Matsuyama H.Desalination,2013,325:40.
[55] 陈培培(Chen P P), 徐佳(Xu Jia), 蒋钰烨(Jiang Y Y), 冯晨晨(Feng C C), 高从堦(Gao C J).高等学校化学学报(Chemical Research in Chinese Universities), 2013, 34:739.
[56] Xu J, Zhang L L,Gao X L,BieH Y, Fu Y P, GaoC J.J. Membr. Sci., 2015,491:28.
[57] Qiu J H, Zhang Y W, Zhang Y T, Zhang H Q, LiuJ D.J. Colloid Interface Sci., 2011,354(1):152.
[58] Liu Z Y, Hu Y X, Liu C F, Zhou Z Y.Chem. Commun., 2016, 52(82):12245.
[59] Ji H W, Sun H J, Qu X G.Adv. Drug Delivery Rev., 2016, 105:176.
[60] Liu S B, Zeng T H, Hofmann M, Burcombe E, Wei J, Jiang R R,Kong J, Chen Y.ACS Nano, 2011, 95:6971.
[61] Perreault F,Tousley M E,Elimelech M. Environ. Sci. Technol. Lett., 2014, 1(1):71.
[62] Huang X W, Marsh K L, McVerry B T, Hoek E M V, Kaner R B.ACS Appl. Mater. Interfaces,2016, 8(23):14334.
[63] Cai X, Lin M S, Tan S Z, Mai W J, Zhang Y M, Liang Z W, Lin Z D, Zhang X J. Carbon, 2012, 50(10):3407.
[64] Mahmoudi E, Ng L Y, Ba-Abbad M M,Mohammad A W. Chem. Eng. J., 2015, 277:1.
[65] DamodarR A, You S J, Chou H H.J. Hazard. Mater., 2009, 172(2/3):1321.
[66] Ni L, Meng J Q, Li X G, Zhang Y F.J. Membr. Sci., 2014, 451:205.
[67] Pan Y, Ma L J, Lin S, Zhang Y F, Cheng B W, Meng J Q.J. Mater. Chem. A, 2016, 4(41):15945.
[68] Ye G, LeeJ H,Perreault F,Elimelech M.ACS Appl. Mater. Interfaces, 2015, 7(41):23069.
[1] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[2] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[3] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
[4] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[9] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[10] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[11] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[12] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.
[13] 张浩, 许芳, 王合营, 姜涛, 马志. 基于聚亚甲基的新型共聚物的可控合成[J]. 化学进展, 2018, 30(2/3): 179-189.
[14] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[15] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.