English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1887-1898 DOI: 10.7536/PC180345 前一篇   后一篇

• 综述 •

低表面能化合物在超浸润材料中的应用

侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*   

  1. 西安科技大学化学与化工学院 西安 710054
  • 收稿日期:2018-03-18 修回日期:2018-06-15 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 何金梅 E-mail:jinmhe@gmail.com
  • 基金资助:
    国家自然科学基金项目(No.21473132)资助

Application of Low Surface Energy Compounds to the Superwetting Materials

Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2018-03-18 Revised:2018-06-15 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21473132).
近年来,由于超浸润材料在自清洁、微流体传输和生物相容性等方面的潜在应用,具有极端润湿性的超浸润材料成为了材料领域的一个研究热点。研究表明,除材料表面微纳米结构的构筑外,材料表面能的控制也是制备超浸润材料的另一关键因素。随着对超浸润材料润湿性机理研究的深入,许多不同结构不同类型的低表面能化合物也越来越多地被应用于超浸润材料的制备中。本文从分子结构、化合物类型等角度出发,综述了超浸润材料制备中所大量应用的低表面能化合物,并归纳了pH值、温度、浓度及溶剂等因素对材料低表面能化的影响,总结了低表面能化合物在提高机械强度、制备润湿性转换材料和不同浸润性修饰中的选择和应用情况,最后提出了低表面能化合物应用的一些不足之处并对其发展方向进行了展望。
Recently, the superwetting materials have become a new research hotspot due to their potential application in self-cleaning, microfluidics transmission, biocompatibility etc. In addition to the creating of rough micro-nanoscale structure, the control of surface energy of the materials is also a vital factor for fabricating the superwetting materials. With the deepening of research on the mechanism of the wettability of superwetting surface, more and more kinds of low surface energy compounds with different structures have been used to decrease the surface energy. Based on the molecular structures and compound types, this paper reviews the low surface energy compounds in fabricating the superwetting materials, concludes the effects of pH value, temperature, concentration and solvent on the low surface energy materials, and summarizes the selection and application of low surface energy compounds for improving the mechanical strength, and preparing materials of wettability transformation and different wettability modification. Finally, some existing problems are discussed and the future research directions in this field are proposed.
Contents
1 Introduction
2 Types of the low surface energy compounds
2.1 Silane coupling agent
2.2 Aluminate coupling agent
2.3 Saturated fatty compounds
2.4 Low surface energy polymers with 3D structure
2.5 Composite compounds with low surface energy
3 Factors affecting the low surface energy of materials
3.1 pH
3.2 Temperature
3.3 Concentration
3.4 Solvent
3.5 Other factors
4 Selection and application of low surface energy compounds
4.1 Mechanical strength
4.2 Wettability transformation
4.3 Different wettability
5 Existing problems
6 Conclusion and outlook

中图分类号: 

()
[1] Zhang C Q, Mcadams Ⅱ D A, Grunlan J C. Adv. Mater., 2016, 28(30):6292.
[2] Darmanin T, Guittard F. J. Mater. Chem. A, 2014, 2:16319.
[3] 屈孟男(Qu M N), 侯琳刚(Hou L G), 何金梅(He J M), 马雪瑞(Ma X R), 袁明娟(Yuan M J), 刘向荣(Liu X R). 化学进展(Progress in Chemistry), 2016, 28(12):1774.
[4] Wang S T, Liu K S, Yao X, Jiang L. Chem. Rev., 2015, 115(16):8230.
[5] Patankar N A. Langmuir, 2004, 20(19):8209.
[6] Spori D M, Drobek T, Zürcher S, Ochsner M, Sprecher C, Mühlebach A, Spencer N D. Langmuir, 2008, 24(10):5411.
[7] Marmur A. Langmuir, 2004, 20(9):3517.
[8] Nosonovsky M. Langmuir, 2007, 23(6):3157.
[9] Alexander S, Eastoe J, Lord A M, Guittard F, Barron A R.ACS Appl. Mater. Inter., 2016, 8(1):660.
[10] Sukamanchi R, Mathew D, K.S. S K. ACS Sustainable Chem. Eng., 2017, 5(1):252.
[11] Rawal A, Sharma S, Kumar V, Saraswat H. Applied Surface Science, 2016, 389:469.
[12] Xu W G, Shi X F, Lu S X. Materials Chemistry and Physics, 2011, 129(3):1042.
[13] Barthlott W, Neinhuis C. Planta, 1997, 202(1):1.
[14] Koch K, Bohn H F, Barthlott W. Langmuir, 2009, 25(24):14116.
[15] Li W, Fang G P, Li Y F, Qiao G J. J. Phys. Chem. B, 2008, 112(24):7234.
[16] Zheng Q S, Yu Y, Zhao Z H. Langmuir, 2005, 21(26):12207.
[17] Izumi K, Tanaka H, Murakami M, Deguchi T, Morita A. Journal of Non-Crystalline Solids, 1990, 121(1/3):344.
[18] Tadanaga K, Morinaga J, Minami T. Journal of Sol-gel Science and Technology, 2000, 19(1/3):211.
[19] Deng X, Mammen L, Butt H J, Vollmer D. Science, 2012, 335(6064):67.
[20] Schutzius T M, Bayer I S, Tiwari M K, Megaridis C M. Ind. Eng. Chem. Res., 2011, 50(19):11117.
[21] Zhou C L, Chen Z D, Yang H, Hou K, Zeng X J, Zheng Y F, Cheng J. ACS Appl. Mater. Inter., 2017, 9(10):9184.
[22] Li Y, Men X H, Zhu X T, Ge B, Chu F J, Zhang Z Z. J. Mater. Sci., 2016, 51(5):2411.
[23] Wang Z X, Hou D Y, Lin S H. Environ. Sci. Technol., 2016, 50(7):3866.
[24] Li L X, Li B C, Dong J, Zhang J P. J. Mater. Chem. A, 2016, 4:13677.
[25] Qing Y Q, Hu C B, Yang C N, An K, Tang F W, Tan J Y, Liu C S. ACS Appl. Mater. Inter., 2017, 9(19):16571.
[26] Zhang W B, Xiang T H, Liu F, Zhang M, Gan W T, Zhai X L, Di X, Wang Y Z, Liu G X, Wang C Y. ACS Appl. Mater. Inter., 2017, 9(18):15776.
[27] Wu C Q, Liu Q, Chen R R, Liu J Y, Zhang H S, Li R M, Takahashi K, Liu P L, Wang J. ACS Appl. Mater. Inter., 2017, 9(12):11106.
[28] Abbas R, Khereby M A, Sadik W A, EI Demerdash A G M. Cellulose, 2015, 22:887.
[29] Guo F, Wen Q Y, Peng Y B, Guo Z G. J. Mater. Chem. A, 2017, 5:21866.
[30] Wang L M, McCarthy T J. Angew. Chem. Int. Ed., 2016, 55:244.
[31] Hsu C P, Chang L Y, Chiu C W, Lee P T C, Lin J J. ACS Appl. Mater. Inter., 2013, 5(3):538.
[32] 刘奇龙(Liu Q L), 袁志庆(Yuan Z Q), 吴若梅(Wu R M), 滑广军(Hua G J), 蒋海云(Jiang H Y), 郝喜海(Hao X H). 包装工程(Packaging Engineering), 2016, 37(5):31.
[33] 杨啸天(Yang X T), 帅茜(Shuai Q), 罗艳梅(Luo Y M), 董亦可(Dong Y K), 谭月明(Tan Y M), 陈波(Chen B), 马铭(Ma M). 应用化学(Chinese Journal of Applied Chemistry), 2015, 32(6):726.
[34] Cao C Y, Ge M Z, Huang J Y, Li S H, Deng S, Zhang S N, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K. J. Mater. Chem. A, 2016, 4:12179.
[35] Hou Y, Wang Z, Guo J, Shen H, Zhang H, Zhao N, Zhao Y P, Chen L, Liang S M, Jin Y, Xu J. RSC J. Mater. Chem. A, 2015, 3:23252.
[36] Li Q Q, Yan Y H, Yu M, Song B T, Shi S Q, Gong Y K. Applied Surface Science, 2016, 367:101.
[37] Qu M N, Hou L G, He J M, Feng J, Liu S S, Yao Y L. Fibers Polym., 2016, 17(12):2062.
[38] 林美群(Lin M Q), 马少健(Ma S J), 莫伟(Mo W), 王桂芳(Wang G F). 有色矿冶(Non-Ferrous Mining and Metallurgy), 2006, 22:83.
[39] Qu M N, Ma X R, He J M, Feng J, Liu S S, Yao Y L, Hou L G, Liu X R. ACS Appl. Mater. Inter., 2017, 9(1):1011.
[40] Shami Z, Amininasab S M, Shakeri P. ACS Appl. Mater. Inter., 2016, 8(42):28964.
[41] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Zhang N Q, Sun K N. ACS Appl. Mater. Inter., 2013, 5(21):11363.
[42] Wang K L, Dong Y M, Yan Y T, Zhang S F, Li J Z. RSC Adv., 2017, 7:29149.
[43] Schlaich C, Yu L X, Camacho L C, Wei Q, Haag R. Polym. Chem., 2016, 7:7446.
[44] Jefferson L U, Netchaev A D, Jefcoat J A, Windham A D, McFarland F M, Guo S, Buchanan R K, Buchanan J P. ACS Appl. Mater. Inter., 2015, 7(23):12639.
[45] Esteves A C C, Put M W P V D, Carcouët C C M, With G D. Adv. Funct. Mater., 2014, 24(7):986.
[46] Wang H X, Zhou H, Gestos A, Fang J, Lin T. ACS Appl. Mater. Inter., 2013, 5(20):10221.
[47] Zhang J, Lin W Q, Zhu C X, Lv J, Zhang W C, Feng J. Langmuir, 2018, 34(19):5600.
[48] Qu M N, Liu S S, He J M, Feng J, Yao Y L, Hou L G, Ma X R. J. Mater. Sci., 2016, 51(18):8718.
[49] Jiang Y G, Wang Z Q, Yu X, Shi F, Xu H P, Zhang X. Langmuir, 2005, 21(5):1986.
[50] Dang Z, Liu L B, Li Y, Xiang Y, Guo G L. ACS Appl. Mater. Inter., 2016, 8(45):31281.
[51] Ou R W, Wei J, Jiang L, Simon G P, Wang H T. Environ. Sci. Technol., 2016, 50(2):906.
[52] Yabu H, Hirai Y, Kojima M, Shimomura M. Chem. Mater., 2009, 21(9):1787.
[53] Zhu J F, Liu B, Li L Y, Zeng Z X, Zhao W J, Wang G, Guan X Y. J. Phys. Chem. A, 2016, 120(28):5617.
[54] Sheng J L, Zhang M, Xu Y, Yu J Y, Ding B. ACS Appl. Mater. Inter., 2016, 8(40):27218.
[55] Julthongpiput D, Lin Y H, Teng J, Zubarev E R, Tsukruk V V. Langmuir, 2003, 19(19):7832.
[56] Boyes S G, Brittain W J, Weng X, Cheng S Z D. Macromolecules, 2002, 35(13):4960.
[57] Granville A M, Boyes S G, Akgun B, Foster M D, Brittain W J. Macromolecules, 2004, 37(8):2790.
[58] Uyama A, Yamazoe S, Shigematsu S, Morimoto M, Yokojima S, Mayama H, Kojima Y, Nakamura S, Uchida K. Langmuir, 2011. 27(10):6395.
[59] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20(11):3554.
[60] Sheng J L, Xu Y, Yu J Y, Ding B. ACS Appl. Mater. Inter., 2017, 9(17):15139.
[61] Wang Y X, Bhushan B. ACS Appl. Mater. Inter., 2015, 7(1):743.
[62] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Li C, Zhang N Q, Sun K N. ACS Appl. Mater. Inter., 2014, 6(1):636.
[63] Lei Z W, Zhang G Z, Deng Y H, Wang C Y. ACS Appl. Mater. Inter., 2017, 9(10):8967.
[64] Leon A D, Advincula R C. ACS Appl. Mater. Inter., 2014, 6(24):22666.
[65] Fujie T, Park J Y, Murata A, Estillore N C, Tria M C R, Takeoka S, Advincula R C. ACS Appl. Mater. Inter., 2009, 1(7):1404.
[66] Jiang W H, Wu G J, He Y N, Wang X G, An Y L, Song Y L, Jiang L. Chem. Commun., 2005, 0:3550.
[67] Lim H S, Han J T, Kwak D, Jin M H, Cho K. J. Am. Chem. Soc., 2006, 128(45):14458.
[68] Xu L Y, Ye Q, Lu X M, Lu Q H. ACS Appl. Mater. Inter., 2014, 6(16):14736.
[69] Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M. J. Am. Chem. Soc., 2003, 125(13):3896.
[70] Yuan J, Wang J H, Zhang K L, Hu W B. RSC Adv., 2017, 7:28909.
[71] Li Z J, Yuan Y. RSC Adv., 2016, 6:90587.
[72] Su F H, Yao K. ACS Appl. Mater. Inter., 2014, 6(11):8762.
[73] Gao F, Wang W W, Li X X, Li L, Lin J P, Lin S L. J. Colloid Interf. Sci., 2016, 468:70.
[74] Li B C, Zhang J P. Chem. Commun., 2016, 52:2744.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[3] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[4] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[5] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[6] 屈孟男*, 袁明娟, 何姣, 薛萌辉, 何金梅*. 智能响应型超浸润材料[J]. 化学进展, 2018, 30(12): 1874-1886.
[7] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[8] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[9] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[10] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[11] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[12] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[13] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[14] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[15] 陈钰, 徐建生, 郭志光. 仿生超疏水性表面的最新应用研究[J]. 化学进展, 2012, 24(05): 696-708.