English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1487-1495 DOI: 10.7536/PC180613 前一篇   后一篇

• 综述 •

硒蛋白S的结构、功能及与疾病的关系

刘红梅*, 金剑波, 周军, 黄开勋, 徐辉碧   

  1. 华中科技大学化学与化工学院 生物无机化学与药物湖北省重点实验室 武汉 430074
  • 收稿日期:2018-06-12 修回日期:2018-08-04 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 刘红梅 E-mail:hongmeiliuhust@hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.31170775,31270870,21771068)资助

The Structure and Function of Selenoprotein S and Its Relationship with Diseases

Hongmei Liu*, Jianbo Jin, Jun Zhou, Kaixun Huang, Huibi Xu   

  1. School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2018-06-12 Revised:2018-08-04 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 31170775, 31270870, 21771068).
硒是一种人体必需的微量营养元素,其主要生物功能是通过硒蛋白实现。硒蛋白S (SELENOS)是一种主要存在于内质网膜的硒蛋白,参与了内质网相关蛋白降解过程。SELENOS主要是通过胞质中的卷曲螺旋结构域和C-端含硒代半胱氨酸残基的无规结构区发挥生物功能的。大量体外研究结果显示,SELENOS有调节氧化应激、内质网应激、炎症等功能,进而可能影响心血管疾病、2型糖尿病、阿尔茨海默症等疾病的发生发展。此外,流行病学观察研究发现SELENOS基因的多种单核苷酸多态性与心血管疾病、癌症等疾病密切相关。本文综述了SELENOS结构、功能及与疾病的关系,总结了SELENOS研究中尚待解决的问题,并对其未来的发展方向进行了展望。
Selenium is an essential trace element for human being and its biological functions are mainly carried out by selenoproteins. Selenoprotein S(SELENOS) mainly localizes to the endoplasmic reticulum(ER) membrane and is involved in the process of ER-associated degradation. The biological functions of SELENOS are mainly carried out through the coiled-coil domain and C-terminal disordered structure region containing selenocysteine residue in the cytosol. A large number of in vitro studies have shown that SELENOS participates in the regulation of oxidative stress, ER stress and inflammation, and thus is possibly involved in the development of cardiovascular disease, type 2 diabetes, and Alzheimer's disease. Furthermore, the observational epidemiological studies have found that many single nucleotide polymorphisms in the SELENOS gene are closely associated with cardiovascular disease and cancer. This paper reviews the structure and function of SELENOS and its relationship with diseases. The problems remaining to be solved are summarized and the future developments are prospected.
Contents
1 Introduction
2 Expression pattern, structure, and distribution of SELENOS
3 The biological function of SELENOS
3.1 Regulation of oxidative stress
3.2 Regulation of endoplasmic reticulum stress
3.3 Regulation of inflammation
4 The relationship of SELENOS with diseases
4.1 Cardiovascular diseases
4.2 Type 2 diabetes
4.3 Cancer
4.4 Alzheimer's disease
5 Conclusion and outlook

中图分类号: 

()
[1] 黄开勋(Huang K X), 徐辉碧(Xu H B), 刘琼(Liu Q), 刘红梅(Liu H M). 硒的化学、生物化学及其在生命科学中的应用(Selenium:Its Chemistry, Biochemistry and Application in Life Science) (第二版)(2nd Edition). 武汉:华中科技大学出版社(Wuhan:Huazhong University of Science and Technology), 2009.
[2] Labunskyy V M, Hatfield D L, Gladyshev V N. Physiol. Rev., 2014, 94:739.
[3] Walder K, Kantham L, McMillan J S, Trevaskis J, Kerr L, de Silva A, Sunderland T, Godde N, Gao Y, Bishara N, Windmill K, Tenne-Brown J, Augert G, Zimmet P Z, Collier G R. Diabetes, 2002, 51:1859.
[4] Kryukov G V, Castellano S, Novoselov S V, Lobanov A V, Zehtab O, Guigo R, Gladyshev V N. Science, 2003, 300:1439.
[5] Yu S S, Du J L. Cardiovasc. diabetol., 2017, 16:101.
[6] Addinsall A B, Wright C R, Andrikopoulos S, van der Poel C, Stupka N. Biochem. J., 2018, 475:1037.
[7] 刘红梅(Liu H M), 黄开勋(Huang K X), 徐辉碧(Xu H B). 中国科学:化学(Sientia Sinica Chimica), 2014, 44:531.
[8] Donath M Y, Shoelson S E. Nat. Rev. Immunol., 2011, 11:98.
[9] Tabas I. Circ. Res., 2010, 107:839.
[10] Hansson G K, Robertson A K, Soderberg-Naucler C. Annu. Rev. Pathol., 2006, 1:297.
[11] Brown D I, Griendling K K. Circ. Res., 2015, 116:531.
[12] Hulsmans M, Holvoet P. J. Cell Mol. Med., 2010, 14:70.
[13] Zhang K Z, Kaufman R J. Nature, 2008, 454:455.
[14] Bubenik J L, Miniard A C, Driscoll D M. PLoS One, 2013, 8:e62102.
[15] Lin H C, Ho S C, Chen Y Y, Khoo K H, Hsu P H, Yen H C. Science, 2015, 349:91.
[16] Christensen L C, Jensen N W, Vala A, Kamarauskaite J, Johansson L, Winther J R, Hofmann K, Teilum K, Ellgaard L. J. Biol. Chem., 2012, 287:26388.
[17] Ye Y H, Shibata Y, Yun C, Ron D, Rapoport T A. Nature, 2004, 429:841.
[18] Tang W K, Zhang T, Ye Y H, Xia D. Cell Discov., 2017, 3:17045.
[19] Liu J, Li F, Rozovsky S. Biochemistry, 2013, 52:3051.
[20] Ye Y, Fu F, Li X, Yang J, Liu H. J. Cell. Biochem., 2016, 117:106.
[21] Stocker R, Keaney J F. Physiol. Rev., 2004, 84:1381.
[22] Gao Y, Feng H C, Walder K, Bolton K, Sunderland T, Bishara N, Quick M, Kantham L, Collier G R. FEBS Lett., 2004, 563:185.
[23] Zhao Y, Li H, Men L L, Huang R C, Zhou H C, Xing Q, Yao J J, Shi C H, Du J L. J. Transl. Med., 2013, 11:287.
[24] Liu J, Rozovsky S. Biochemistry, 2013, 52:5514.
[25] Kim K H, Gao Y, Walder K, Collier G R, Skelton J, Kissebah A H. Biochem. Biophys. Res. Commun., 2007, 354:127.
[26] Fradejas N, Pastor M D, Mora-Lee S, Tranque P, Calvo S. J. Mol. Neurosci., 2008, 35:259.
[27] Fradejas N, Serrano-Perez Mdel C, Tranque P, Calvo S. Glia, 2011, 59:959.
[28] Lee J H, Kwon J H, Jeon Y H, Ko K Y, Lee S R, Kim I Y. J. Biol. Chem., 2014, 289:13758.
[29] Speckmann B, Gerloff K, Simms L, Oancea I, Shi W, McGuckin M A, Radford-Smith G, Khanna K K. Free Radic. Biol. Med., 2014, 67:265.
[30] Qin H S, Yu P P, Sun Y, Wang D F, Deng X F, Bao Y L, Song J, Sun L G, Song Z B, Li Y X. Mol. Med. Rep., 2016, 13:5118.
[31] Du S Q, Liu H M, Huang K X. Biochim. Biophys. Acta, 2010, 1800:511.
[32] Ruggiano A, Foresti O, Carvalho P. J. Cell Biol., 2014, 204:868.
[33] Ye Y H, Shibata Y, Kikkert M, van Voorden S, Wiertz E, Rapoport T A. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:14132.
[34] Lilley B N, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:14296.
[35] Christianson J C, Olzmann J A, Shaler T A, Sowa M E, Bennett E J, Richter C M, Tyler R E, Greenblatt E J, Harper J W, Kopito R R. Nat. Cell Biol., 2012, 14:93.
[36] Shchedrina V A, Everley R A, Zhang Y, Gygi S P, Hatfield D L, Gladyshev V N. J. Biol. Chem., 2011, 286:42937.
[37] Lee J H, Park K J, Jang J K, Jeon Y H, Ko K Y, Kwon J H, Lee S R, Kim I Y. J. Biol. Chem., 2015, 290:29941.
[38] Hou X, Wei H, Rajagopalan C, Jiang H, Wu Q, Zaman K, Xie Y, Sun F. Sci. Rep., 2018, 8:4764.
[39] Curran J E, Jowett J B, Elliott K S, Gao Y, Gluschenko K, Wang J, Abel Azim D M, Cai G, Mahaney M C, Comuzzie A G, Dyer T D, Walder K R, Zimmet P, MacCluer J W, Collier G R, Kissebah A H, Blangero J. Nat. Genet., 2005, 37:1234.
[40] Zeng J H, Du S Q, Zhou J, Huang K X. Arch. Biochem. Biophys., 2008, 478:1.
[41] Cui S Y, Men L L, Li Y, Zhong Y S, Yu S S, Li F, Du J L. Mediators Inflamm., 2018, 2018:1625414.
[42] Gao Y, Hannan N R, Wanyonyi S, Konstantopolous N, Pagnon J, Feng H C, Jowett J B, Kim K H, Walder K, Collier G R. Cytokine, 2006, 33:246.
[43] He L, Wang B, Yao Y, Su M S, Ma H X, Jia N. Mol. Med. Rep., 2014, 9:1869.
[44] Wright C R, Allsopp G L, Addinsall A B, McRae N L, Andrikopoulos S, Stupka N. Mediators Inflamm., 2017, 2017:7043429.
[45] Alanne M, Kristiansson K, Auro K, Silander K, Kuulasmaa K, Peltonen L, Salomaa V, Perola M. Hum. Genet., 2007, 122:355.
[46] Cox A J, Lehtinen A B, Xu J, Langefeld C D, Freedman B I, Carr J J, Bowden D W. Acta Diabetol., 2013, 50:391.
[47] Li X X, Guan H J, Liu J P, Guo Y P, Yang Y, Niu Y Y, Yao L Y, Yang Y D, Yue H Y, Meng L L, Cui X Y, Yang X W, Gao J X. Blood Coagul. Fibrin., 2015, 26:131.
[48] Hyrenbach S, Pezzini A, del Zotto E, Giossi A, Lichy C, Kloss M, Werner I, Padovani A, Brandt T, Grond-Ginsbach C. Eur. J. Neurol., 2007, 14:1173.
[49] Ye Y, Bian W, Fu F, Hu J, Liu H. J. Biol. Inorg. Chem., 2018, doi 10.1007/s00775-018-1563-7.
[50] Clarke M C, Figg N, Maguire J J, Davenport A P, Goddard M, Littlewood T D, Bennett M R. Nat. Med., 2006, 12:1075.
[51] Gao Y, Walder K, Sunderland T, Kantham L, Feng H C, Quick M, Bishara N, de Silva A, Augert G, Tenne-Brown J, Collier G R. Diabetes, 2003, 52:929.
[52] Karlsson H K R, Tsuchida H, Lake S, Koistinen H A, Krook A. Diabetes, 2004, 53:1424.
[53] Du J L, Sun C K, Lu B, Men L L, Yao J J, An L J, Song G R. Chin. Med. J., 2008, 121:1165.
[54] 周军(Zhou J), 白兆帅(Bai Z S), 徐辉碧(Xu H B), 黄开勋(Huang K X). 化学进展(Progress in Chemistry), 2013, 25:488.
[55] Zhou J, Huang K, Lei X G. Free Radic. Biol. Med., 2013, 65:1548.
[56] Sutherland A, Kim D H, Relton C, Ahn Y O, Hesketh J. Genes Nutr., 2010, 5:215.
[57] Meplan C, Hughes D J, Pardini B, Naccarati A, Soucek P, Vodickova L, Hlavata I, Vrana D, Vodicka P, Hesketh J E. Carcinogenesis, 2010, 31:1074.
[58] Shibata T, Arisawa T, Tahara T, Ohkubo M, Yoshioka D, Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I. BMC Gastroenterology, 2009, 9:2.
[59] Mao H J, Cui R F, Wang X C. Int. J. Clin. Exp. Med., 2015, 8:10993.
[60] Citron M. Nat. Rev. Drug Discov., 2010, 9:387.
[61] Jang J K, Park K J, Lee J H, Ko K Y, Kang S, Kim I Y. Biochem. Biophys. Res. Commun., 2017, 486:444.
[62] Rueli R H, Torres D J, Dewing A S, Kiyohara A C, Barayuga S M, Bellinger M T, Uyehara-Lock J H, White L R, Moreira P I, Berry M J, Perry G, Bellinger F P. J. Alzheimers Dis., 2017, 55:749.
[1] 黄辉, 陈俊, 卢会茹, 周梦雪, 胡毅, 柴之芳. 帕金森病中的关键金属元素[J]. 化学进展, 2018, 30(10): 1592-1600.
[2] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[3] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[4] 陈平, 姜亮, 刘琼*, 杨思林, 宋云, 倪嘉缵. 硒蛋白M及其与重大疾病的关系[J]. 化学进展, 2013, 25(04): 479-487.
[5] 马小媛, 钱卫平. 抗氧化能力评价方法[J]. 化学进展, 2011, 23(8): 1737-1746.
[6] 曾金红,张功臣,黄开勋. 硒蛋白S的生物学功能* [J]. 化学进展, 2009, 21(0708): 1494-1499.
[7] 张世炳,汪英,刘长林. 基于金属的神经退行性疾病治疗策略*[J]. 化学进展, 2009, 21(05): 903-910.
[8] 胡平,吴耿伟,夏青,毛宗万. SOD模拟及其抗氧化和抗炎症功能的研究进展*[J]. 化学进展, 2009, 21(05): 873-879.
[9] 余凌虹,刘耕陶. 五味子联苯环辛烯类木脂素成分的结构与药理活性关系和药物创新[J]. 化学进展, 2009, 21(01): 66-76.
[10] 李海玲 徐辉碧 高中洪 . 微量元素铁与蛋白质酪氨酸硝化[J]. 化学进展, 2006, 18(05): 622-626.