English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1464-1474 DOI: 10.7536/PC180528 前一篇   后一篇

所属专题: 酶化学

• 综述 •

人工金属酶分子设计新进展:肌红蛋白研究实例分析

林英武1,2*   

  1. 1. 南华大学化学化工学院 衡阳 421001;
    2. 南华大学蛋白质结构与功能实验室 衡阳 421001
  • 收稿日期:2018-05-22 修回日期:2018-07-16 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 林英武 E-mail:ywlin@usc.edu.cn,linlinying@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.31370812,21701081)资助

Rational Design of Artificial Metalloenzymes: Case Studies in Myoglobin

Yingwu Lin1,2*   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
  • Received:2018-05-22 Revised:2018-07-16 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 31370812,21701081).
金属酶在生物体中发挥着多种至关重要的作用,而人工金属酶的分子设计能够调控和拓展天然金属酶的功能,甚至创造出功能更为优越的新型酶分子。肌红蛋白(Mb)是作为血红素蛋白或其他金属蛋白分子设计的理想蛋白模型。近些年,基于Mb蛋白骨架的人工金属酶的分子设计逐渐发展了多种研究策略,包括设计氢键网络、金属结合位点、分子内二硫键、利用蛋白翻译后修饰、引入非天然氨基酸和非天然辅基等。本文着重综述这些方面的最新研究进展,可以帮助我们深刻认识金属酶的结构与功能关系,同时掌握人工金属酶分子设计的思路与方法,从而有助于推动这一领域的快速发展。
Metalloenzymes play diverse important functions in biological systems. Meanwhile, design of artificial metalloenzymes may fine-tune and expand the functionalities of natural metalloenzymes, and even create novel enzymes with more advanced functions. Myoglobin(Mb) is an ideal protein model for design of heme proteins and other metalloenzymes. In recent years, various approaches have been developed for design of artificial metalloenzymes based on the protein scaffold of Mb, which include design of hydrogen-bonding network, intramolecular disulfide bond, the use of post-translational modifications, introduction of non-natural amino acids and non-native cofactors. This review summaries the recent progress in these aspects, which will help us understand the structure and function relationship of metalloenzymes, master the idea and methodologies of artificial metalloenzyme design, thereby promoting the rapid development in this field.
Contents
1 Introduction
2 Approaches and cases studies
2.1 Design of hydrogen-bonding network
2.2 Design of metal-binding site
2.3 Design of disulfide bond
2.4 Use of post-translational modifications
2.5 Introduction of non-natural amino acids
2.6 Introduction of non-native cofactors
3 Conclusion and outlook

中图分类号: 

()
[1] Poulos T L. Chem. Rev., 2014, 114:3919.
[2] Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem. Rev., 2014, 114:4366.
[3] Huang X, Groves J T. Chem. Rev., 2018, 118:2491.
[4] Waldron K J, Rutherford J C, Ford D, Robinson N J. Nature, 2009, 460:823.
[5] Valdez C E, Smith Q A, Nechay M R, Alexandrova A N. Acc. Chem. Res., 2014, 47:3110.
[6] Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101:3047.
[7] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460:855.
[8] Lin Y W, Sawyer E B, Wang J Y. Chem. Asian J., 2013, 8:2534.
[9] Petrik I D, Liu J, Lu Y. Curr. Opin. Chem. Biol., 2014, 19:67.
[10] Huang P S, Boyken S E, Baker D. Nature, 2016, 537:320.
[11] Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Chem. Soc. Rev., 2016, 45:5020.
[12] Lin Y W. Coord. Chem. Rev., 2017, 336:1.
[13] Hu C, Yu Y, Wang J Y. Chem. Commun. (Camb.)., 2017, 53:4173.
[14] Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni M M, Lebrun V, Reuter R, Kohler V, Lewis J C, Ward T R. Chem. Rev., 2018, 118:142.
[15] Moody P C E, Raven E L. Acc. Chem. Res., 2018, 51:427.
[16] Hirota S, Lin Y W. J. Biol. Inorg. Chem., 2018, 23:7.
[17] Lin Y, Wang J Y, Lu Y. Sci. China Chem., 2014, 57:346.
[18] Du J F, Li W, Li L, Wen G B, Lin Y W, Tan X. ChemistryOpen, 2015, 4:97.
[19] Zeng J, Zhao Y, Li W, Tan X, Wen G B, Lin Y W. J. Mol. Catal. B:Enzym., 2015, 111:9.
[20] Zhao Y, Du K J, Gao S Q, He B, Wen G B, Tan X, Lin Y W. J. Inorg. Biochem., 2016, 156:113.
[21] Wu L B, Yuan H, Gao S Q, You Y, Nie C M, Wen G B, Lin Y W, Tan X. Nitric Oxide, 2016, 57:21.
[22] Wu L B, Du K J, Nie C M, Gao S Q, Wen G B, Tan X, Lin Y W. J. Mol. Catal. B:Enzym., 2016, 134:367.
[23] Ferguson-Miller S, Babcock G T. Chem. Rev., 1996, 96:2889.
[24] Sigman J A, Kwok B C, Lu Y. J. Am. Chem. Soc., 2000, 122:8192.
[25] Miner K D, Mukherjee A, Gao Y G, Null E L, Petrik I D, Zhao X, Yeung N, Robinson H, Lu Y. Angew. Chem. Int. Ed., 2012, 51:5589.
[26] Petrik I D, Davydov R, Ross M, Zhao X, Hoffman B, Lu Y. J. Am. Chem. Soc., 2016, 138:1134.
[27] Buschmann S, Warkentin E, Xie H, Langer J D, Ermler U, Michel H. Science, 2010, 329:327.
[28] Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. Science, 1996, 272:1136.
[29] Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Science, 2010, 330:1666.
[30] Sundaramoorthy M, Kishi K, Gold M H, Poulos T L. J. Mol. Biol., 1994, 238:845.
[31] Sigman J A, Kim H K, Zhao X, Carey J R, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2003, 100:3629.
[32] Yeung N, Lin Y W, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Nature, 2009, 462:1079.
[33] Bhagi-Damodaran A, Michael M A, Zhu Q, Reed J, Sandoval B A, Mirts E N, Chakraborty S, Moënne-Loccoz P, Zhang Y, Lu Y. Nat. Chem., 2017, 9:257.
[34] Lin Y W, Yeung N, Gao Y G, Miner K D, Tian S, Robinson H, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:8581.
[35] Matsumura H, Hayashi T, Chakraborty S, Lu Y, Moënne-Loccoz P. J. Am. Chem. Soc., 2014, 136:2420.
[36] Matsumura H, Chakraborty S, Reed J, Lu Y, Moënne-Loccoz P. Biochemistry, 2016, 55:2091.
[37] Lin Y W. Inorg. Chem. Front., 2017, 4:918.
[38] Reed J H, Shi Y, Zhu Q, Chakraborty S, Mirts E N, Petrik I D, Bhagi-Damodaran A, Ross M, Moënne-Loccoz P, Zhang Y, Lu Y. J. Am. Chem. Soc., 2017, 139:12209.
[39] Sun M H, Li W, Liu J H, Wen G B, Tan X, Lin Y W. RSC Adv., 2013, 3:9337.
[40] Castello P R, David P S, McClure T, Crook Z, Poyton R O. Cell metabol., 2006, 3:277.
[41] Bhagi-Damodaran A, Reed J H, Zhu Q, Shi Y, Hosseinzadeh P, Sandoval B A, Harnden K A, Wang S, Sponholtz M R, Mirts E N, Dwaraknath S, Zhang Y, Moënne-Loccoz P, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2018, 115:6195.
[42] Suzuki S, Kataoka K, Yamaguchi K. Acc. Chem. Res., 2000, 33:728.
[43] Shu X G, Su J H, Du K J, You Y, Gao S Q, Wen G B, Tan X, Lin Y W. ChemistryOpen, 2016, 5:192.
[44] Hagihara Y, Saerens D. Biochim. Biophys. Acta, 2014, 1844:2016.
[45] Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro D B, Gladwin M T. J. Biol. Chem., 2011, 286:18277.
[46] Guimaraes B G, Hamdane D, Lechauve C, Marden M C, Golinelli-Pimpaneau B. Acta Crystallogr. D Biol. Crystallogr., 2014, 70:1005.
[47] Ascenzi P, Di Masi A, Leboffe L, Fiocchetti M, Nuzzo M T, Brunori M, Marino M. Mol. Aspects Med., 2016, 52:1.
[48] Ascenzi P, Marino M, Polticelli F, Coletta M, Gioia M, Marini S, Pesce A, Nardini M, Bolognesi M, Reeder B J, Wilson M T. Biochim. Biophys. Acta, 2013, 1834:1750.
[49] Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y. J. Mol. Biol., 2004, 339:873.
[50] Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. J. Inorg. Biochem., 2013, 129:23.
[51] Beckerson P, Reeder B J, Wilson M T. FEBS Lett., 2015, 589:507.
[52] Boron I, Capece L, Pennacchietti F, Wetzler D E, Bruno S, Abbruzzetti S, Chisari L, Luque F J, Viappiani C, Marti M A, Estrin D A, Nadra A D. Biochim. Biophys. Acta, 2015, 1850:169.
[53] Wu L B, Yuan H, Zhou H, Gao S Q, Nie C M, Tan X, Wen G B, Lin Y W. Arch. Biochem. Biophys., 2016, 600:47.
[54] Yin L L, Yuan H, Du K J, He B, Gao S Q, Wen G B, Tan X, Lin Y W. Chem. Commun. (Camb.)., 2018, 54:4356.
[55] Zhao J, Lu C, Franzen S. J. Phys. Chem. B, 2015, 119:12828.
[56] Lin Y W. Arch. Biochem. Biophys., 2018, 641:1.
[57] Lin Y W. Biochim. Biophys. Acta, 2015, 1854:844.
[58] Barker P D, Ferrer J C, Mylrajan M, Loehr T M, Feng R, Konishi Y, Funk W D, MacGillivray R T, Mauk A G. Proc. Natl. Acad. Sci. U.S.A., 1993, 90:6542.
[59] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. ChemBioChem, 2005, 6:1356.
[60] Hu S, He B, Du K J, Wang X J, Gao S Q, Lin Y W. ChemistryOpen, 2017, 6:325.
[61] Cheng H M, Yuan H, Wang X J, Xu J K, Gao S Q, Wen G B, Tan X, Lin Y W. J. Inorg. Biochem., 2018, 182:141.
[62] Yan D J, Li W, Xiang Y, Wen G B, Lin Y W, Tan X. ChemBioChem, 2015, 16:47.
[63] Yan D J, Yuan H, Li W, Xiang Y, He B, Nie C M, Wen G B, Lin Y W, Tan X. Dalton Trans., 2015, 44:18815.
[64] Li L L, Yuan H, Liao F, He B, Gao S Q, Wen G B, Tan X, Lin Y W. Dalton Trans., 2017, 46:11230.
[65] Lu Y. Curr. Opin. Chem. Biol., 2005, 9:118.
[66] Lewis J C. Curr. Opin. Chem. Biol., 2015, 25:27.
[67] Yu Y, Hu C, Xia L, Wang J Y. ACS Catal., 2018, 8:1851.
[68] Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J Y. Angew. Chem. Int. Ed., 2012, 124:4388.
[69] Yu Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Lv X, Ouyang H, Li H, Gao F, Gong W, Lu Y, Wang J Y. Chem. Sci., 2015, 6:3881.
[70] Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J, Wang J Y. Angew. Chem. Int. Ed., 2013, 52:1203.
[71] Chand S, Ray S, Wanigasekara E, Yadav P, Crawford J A, Armstrong D W, Rajeshwar K, Pierce B S. Arch. Biochem. Biophys., 2018, 639:44.
[72] Ensign A A, Jo I, Yildirim I, Krauss T D, Bren K L. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:10779.
[73] Heinecke J L, Yi J, Pereira J C, Richter-Addo G B, Ford P C. J. Inorg. Biochem., 2012, 107:47.
[74] Posey J E, Gherardini F C. Science, 2000, 288:1651.
[75] Sommer D J, Vaughn M D, Ghirlanda G. Chem. Commun. (Camb.), 2014, 50:15852.
[76] Key H M, Dydio P, Clark D S, Hartwig J F. Nature, 2016, 534:534.
[77] Sreenilayam G, Moore E J, Steck V, Fasan R. Adv. Synth. Catal., 2017, 359:2076.
[78] Cai Y B, Li X H, Jing J, Zhang J L. Metallomics, 2013, 5:828.
[79] 蔡元博(Cai Y B), 张俊龙(Zhang J L).中国科学:化学(Scientia Sinica Chimica), 2014, 44:555.
[80] Cai Y B, Yao S Y, Hu M, Liu X, Zhang J L. Inorg. Chem. Front., 2016, 3:1236.
[81] Shi Z H, Du K J, He B, Gao S Q, Wen G B, Lin Y W. Inorg. Chem.Front., 2017, 4:2033.
[82] Ozaki S I, Matsui T, Roach M P, Watanabe Y. Coord. Chem. Rev., 2000, 198:39.
[83] Ueno T, Abe S, Yokoi N, Watanabe Y. Coord. Chem. Rev., 2007, 251:2717.
[84] Hayashi T, Sano Y, Onoda A. Isr. J. Chem., 2015, 55:76.
[85] Carey J R, Ma S K, Pfister T D, Garner D K, Kim H K, Abramite J A, Wang Z, Guo Z, Lu Y. J. Am. Chem. Soc., 2004, 126:10812.
[86] Garner D K, Liang L, Barrios D A, Zhang J L, Lu Y. ACS Catal., 2011, 1:1083.
[87] Zhang J L, Garner D K, Liang L, Chen Q, Lu Y. Chem. Commun. (Camb.), 2008, 1665.
[88] Zhang J L, Garner D K, Liang L, Barrios D A, Lu Y. Chem. Eur. J., 2009, 15:7481.
[89] Hayashi T, Morita Y, Mizohata E, Oohora K, Ohbayashi J, Inoue T, Hisaeda Y. Chem. Commun. (Camb.), 2014, 50:12560.
[90] Morita Y, Oohora K, Sawada A, Doitomi K, Ohbayashi J, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T. Dalton Trans., 2016, 45:3277.
[91] Oohora K, Meichin H, Kihira Y, Sugimoto H, Shiro Y, Hayashi T. J. Am. Chem. Soc., 2017, 139:18460.
[92] Oohora K, Meichin H, Zhao L, Wolf M W, Nakayama A, Hasegawa J Y, Lehnert N, Hayashi T. J. Am. Chem. Soc., 2017, 139:17265.
[93] Sreenilayam G, Moore E J, Steck V, Fasan R. ACS Catal., 2017, 7:7629.
[94] Lin Y W, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Angew. Chem. Int. Ed., 2015, 54:511.
[95] Nanda V, Koder R L. Nat. Chem., 2010, 2:15.
[96] Kries H, Blomberg R, Hilvert D. Curr. Opin. Chem. Biol., 2013, 17:221.
[97] Lin Y W, Nie C M, Liao L F. J. Mol. Model., 2012, 18:4409.
[98] Zhang M, Nakanishi T, Yamanaka M, Nagao S, Yanagisawa S, Shomura Y, Shibata N, Ogura T, Higuchi Y, Hirota S. ChemBioChem, 2017, 18:1712.
[99] Lin Y W. Proteins, 2011, 79:679.
[100] Marshall N M, Garner D K, Wilson T D, Gao Y G, Robinson H, Nilges M J, Lu Y. Nature, 2009, 462:113.
[101] Heinisch T, Ward T R. Acc. Chem. Res., 2016, 49:1711.
[102] Peacock A F. Curr. Opin. Chem. Biol., 2013, 17:934.
[103] Woolfson D N, Bartlett G J, Burton A J, Heal J W, Niitsu A, Thomson A R, Wood C W. Curr. Opin. Struct. Biol., 2015, 33:16.
[104] Boyken S E, Chen Z, Groves B, Langan R A, Oberdorfer G, Ford A, Gilmore J M, Xu C, DiMaio F, Pereira J H, Sankaran B, Seelig G, Zwart P H, Baker D. Science, 2016, 352:680.
[105] Yin L L, Yuan H, Liu C, He B, Gao S Q, Wen G B, Tan X, Lin Y W. ACS Catal., 2018, 8:9619.
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[4] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[5] 林英武. 血红素蛋白二聚、寡聚与多聚[J]. 化学进展, 2014, 26(06): 987-995.
[6] 李高鹏, 张焱*. 必需金属的生物信息学研究现状与展望[J]. 化学进展, 2013, 25(04): 446-456.
[7] 许彩虹, 赵亚琴, 杨斌盛*. 金属离子对金属蛋白结构与功能的调控[J]. 化学进展, 2013, 25(04): 520-529.
[8] 林英武. 计算机辅助蛋白质分子理性设计:从肌红蛋白到一氧化氮还原酶[J]. 化学进展, 2012, 24(05): 784-789.
[9] 彭晓敏, 张金超, 高愈希, 柴之芳. 金属蛋白的提取分离技术[J]. 化学进展, 2012, 24(05): 834-843.
[10] 林英武. 细胞色素b5-蛋白质相互作用研究[J]. 化学进展, 2012, 24(04): 589-597.
[11] 林英武. 蛋白质功能的扩展与人工金属结合位点的理性设计[J]. 化学进展, 2010, 22(06): 1203-1211.
[12] 赵建新 乔义涛 袁直. 合成受体与短肽相互作用研究进展*[J]. 化学进展, 2009, 21(10): 2123-2131.
[13] 蒋华麟,谭相石. 人肝细胞色素P450 2C金属酶与药物代谢*[J]. 化学进展, 2009, 21(05): 911-918.
[14] 马文辉,彭孝军,徐群,宋波. 香豆素类荧光传感器*[J]. 化学进展, 2007, 19(9): 1258-1266.
[15] 孔杰,张国彬,刘勤. 聚硼硅氮烷陶瓷前驱体分子结构设计和合成*[J]. 化学进展, 2007, 19(11): 1791-1799.