English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1601-1614 DOI: 10.7536/PC180316 前一篇   后一篇

• 综述 •

Janus粒子的制备及功能化应用

周婉蓉, 孙巍*, 杨平辉   

  1. 1. 宁波大学材料化学与工程学院 材料科学与工程系;
    2. 宁波特种高分子材料制备与应用技术重点实验室 宁波 315211
  • 收稿日期:2018-03-13 修回日期:2018-06-04 出版日期:2018-11-15 发布日期:2018-09-10
  • 通讯作者: 孙巍,e-mail:sunwei@nbu.edu.cn E-mail:sunwei@nbu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21104036)、宁波市自然科学基金项目(No.2018A610113)、浙江省重点科技创新团队自设项目(No.211R50001-04)和宁波大学王宽诚幸福基金资助

Preparation and Functional Application of Janus Particles

Wanrong Zhou, Wei Sun*, Pinghui Yang   

  1. 1. Department of Materials Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
    2. Key Laboratory of Specialty Polymer, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
  • Received:2018-03-13 Revised:2018-06-04 Online:2018-11-15 Published:2018-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21104036), the Ningbo Natural Science Foundation(No.2018A610113), the Zhejiang Key Technology Innovation Team Sets Up Program (No.211R50001-04),and the Ningbo University Wang Kuancheng Happiness Fund.
Janus粒子是指表面具有两种或两种以上不同化学组成或性质的不对称粒子,目前Janus粒子的制备方法仍在发展中,同时也逐渐形成了Janus粒子在生物医药、催化、材料以及防污等领域功能化应用的研究重点。本文从Janus粒子制备和应用两个方面方法来介绍Janus粒子的研究进展。制备方法主要包括表面选择性修饰法、晶种生长法、微流控法、嵌段共聚物自组装法和电化学沉积法等。应用方面则着重介绍了Janus粒子在生物医药、界面催化、表面活性剂、复合材料、微米马达和防污等方面的功能化应用,并对Janus粒子未来的发展趋势做了展望。
Janus particle refers to particle that possesses two or more sides with different surface chemical compositions or polarities, or is composed of two parts with different geometrical morphologies. With rapid development of the preparation methods of Janus particles, the research attention has been shifted from particles synthesis to applications of the Janus particles in the fields of biomedicine, catalysis, advanced materials and anti-fouling. In this review, research progress of Janus particles is extensively introduced with special focus on functional application of Janus particles. The first part of the review illustrates the progress of synthesizing methods including the selective surface modification, seeded crystallization, microfluidics, self-assembly of block copolymer and electrochemical deposition. The second part gives detailed discussions regarding the applications of Janus particles in biomedicine, interfacial catalyst, surfactants, composite materials, micromotors and anti-fouling. An outlook of Janus particle and its applications in future perspective is also made.
Contents
1 Introduction
2 Synthesis of Janus particles
2.1 Selective surface modification
2.2 Seeded crystallization
2.3 Microfluidic synthesis
2.4 Self-assembly of block copolymer
2.5 Electrochemical deposition
2.6 Other preparation strategies
3 Functional application of Janus particles
3.1 Biomedicine
3.2 Interfacial catalyst
3.3 Surfactant
3.4 Composite material
3.5 Micromotors
3.6 Anti-fouling
4 Conclusion

中图分类号: 

()
[1] De Gennes P G. Angew. Chem. Int. Ed., 1992, 31:842.
[2] Li P, Li K, Niu X F, Fan Y B. RSC Adv., 2016, 6:99034.
[3] Susewind M, Schilmann A M, Heim J, Henkel A, Link T, Fischer K, Strand D, Kolb U, Tahir M N, Brieger J, Tremel W. J. Mater. Chem. C, 2015, 3:1813.
[4] Wang Z, Wang Y P. Materials., 2016, 9:903.
[5] Pradhan S, Ghosh D, Chen S W. ACS Appl. Mater. Interfaces, 2009, 1:2060.
[6] Xie P F, Cao X N, Lin Z T, Javanmard M. Lab Chip, 2017, 17:1939.
[7] Lee V E, Sosa C, Liu R, Prudhomme R K, Priestley R D. Langmuir, 2017, 33:3444.
[8] Yin J C, Chen D Q, Wu S S, Li C R, Liu L Z, Shao Y Z. Nanosale, 2017, 9:16661.
[9] Jia F, Liang F X, Yang Z Z. Langmuir, 2018, 34, 1718.
[10] Tang J N, Li W X, Cao X D, Dong H. RSC Adv., 2015, 5:12872.
[11] Chi M H, Fang Z X, Ko H W, Chang C W, Chen J T. J. Phy. Chem. C, 2016, 120, 28867.
[12] Shao D, Li J, Zheng X, Pan Y, Wang Z, Zhang M, Chen Q X, Dong W F, Chen L. Biomaterials, 2016, 100:118.
[13] Liu B, Zhang C L, Liu J G, Qu X Z, Yang Z Z. Chem. Commun., 2009, 26:3817.
[14] Zhao H, Liang F X, Qu X Z, Yang Z Z. Macromolecules, 2015, 48:700.
[15] Wang Y H, Zhang C L, Tang C, Li J, Shen K, Liu J G, Qu X Z, Li J L, Wang Q, Yang Z Z. Macromolecules, 2011, 44:3787.
[16] Ghoussoub Y E, Schlenoff J B. Langmuir, 2016, 32:3623.
[17] Wu M B, Yang H C, Wang J J, Wu G P, Xu Z K. ACS Appl. Mater. Interface, 2017, 9:5062.
[18] 陈云华(Chen Y H), 王朝阳(Wang Z Y), 李煜(Li Y), 童真(Tong Z). 化学进展(Progress in Chemistry), 2009, 21(4):615.
[19] Walther A, Muller A H E. Chem. Rev., 2013, 113:5194.
[20] Perro A, Meunier F, Schmitt V, Ravaine S. Colloids Surf., A:Physicochem. Eng. Aspects., 2009, 332:57.
[21] Zhang J, Grzybowski B A, Granick S. Langmuir, 2017, 33:6964.
[22] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interface, 2013, 5:1857.
[23] 翟文中(Zhai W Z), 何玉凤(He Y F), 王斌(Wang B), 熊玉兵(Xiong Y B), 宋鹏飞(Song P F), 王荣民(Wang R M). 化学进展(Progress in Chemistry), 2017, 29(1):127.
[24] 杨平辉(Yang P H), 孙巍(Sun W), 胡思(Hu X), 陈忠仁(Chen Z R). 化学进展(Progress in Chemistry), 2014, 26(7):1107.
[25] Poggi E, Gohy J F. Colloid Polym Sci., 2017, 295:2083.
[26] Zenerino A, Peyratout C, Aimable A. J. Collid Interface Sci., 2015, 450:174.
[27] Cha B G, Piao Y Z, Lim J. Mater. Res. Rull., 2015, 70:424.
[28] Casagrande C, Fabre P, Raphael E, Veyssie M. Europhys. Lett., 1989, 9:251.
[29] Hong L, Jiang S, Granick S. Langmuir, 2006, 22:9495.
[30] Panwar K, Jassal M, Agrawal A K. Particuology, 2017, 33:50.
[31] Huang C X, Shen X T. Chem. Commun., 2014, 50:2646.
[32] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S Z. Nano. Lett., 2005, 5:379.
[33] Chen T, Chen G, Xing S X, Wu T, Chen H Y. Chem. Mater., 2010, 22:3826.
[34] Feng Y H, He J T, Wang H, Tay Y Y, Sun H, Zhu L F, Chen H Y. J. Am. Chem. Soc., 2012, 134:2004.
[35] Feng Y H, Wang Y W, Song X H, Xing S X, Chen H Y. Chem Sci., 2017, 8:430.
[36] Zhu T T, Cheng R, Sheppard G R, Locklin J, Mao L D. Langmuir, 2015, 31:8531.
[37] Zhang C C, Chang M W, Li Y D, Qi Y K, Wu J W, Ahmad Z, Li J S. RSC Adv., 2016, 6:77174.
[38] Varma V B, Wu R G, Wang Z P, Ramanujan R V. Lab Chip., 2017, 17:3514.
[39] Hessberger T, Braun L B, Henrich F, Muller C, Gießelmann F, Serra C, Zental R. J. Mater. Chem. C, 2016, 4:8778.
[40] Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E. J. Am. Chem. Soc., 2006, 128:9408.
[41] Yu X L, Zhang C C, You S J, Liu H Q, Zhang L L, Liu W, Guo S S, Zhao X Z. Appl. Phys. Lett., 2016, 108:073504.
[42] Walther A, Muller A H E. Soft Matter, 2008, 4:663.
[43] Groschel A H, Muller A H E. Nanoscale, 2015, 7:11841.
[44] Sfika V, Tsitsilianis C. Macromolecules, 2004, 37:9551.
[45] Cheng L, Zhang G Z, Zhu L, Chen D Y, Jiang M.Angew. Chem. Int. Ed., 2008, 47:10171.
[46] Voets I K, Fokkink R, Hellweg T, King S M, Waard P D, Keizer A D, Stuart M A C. Soft Matter, 2009, 5:999.
[47] Loget G, Roche J, Kuhn A. Adv. Mater.,2012, 24:5111.
[48] Tiewcharoen S, Warakulwit C, Lapeyre V, Garrigue P, Fourier L, Elissalde C, Buffiere S, Legros P, Gayot M, Limtrakul J, Kuhn A. Angew. Chem. Int. Ed., 2017, 56:11431.
[49] Yabu H, Kanahara M, Shimomura M, Arita T, Harano K, Nakamura E, Higuchi T, Jinnai H. ACS Appl. Mater. Interfaces, 2013, 5, 3262.
[50] Yabu H, Ohshima H, Saito Y. ACS Appl. Mater. Interfaces, 2014, 6:18122.
[51] Yu X J, Huang S B, Chen K M, Zhou Z M, Guo X H, Li L. Ind. Eng. Chem. Res., 2015, 54:2690.
[52] Yang M, Guo Y G, Wu Q, Luan Y, Wang G. Polymer, 2014, 55:1948.
[53] Qu L L, Hu H C, Yu J Q, Yu X Y, Liu J, Xu Y, Zhang Q. Langmuir, 2017, 33:5269.
[54] Hu H C, Wu L Z, Tan Y S, Zhong Q X, Chen M, Qiu Y H, Yang D, Sun B Q, Zhang Q, Yin Y D. J. Am. Chem. Soc., 2018, 140:406.
[55] Zhai W Z, Li T, He Y F, Xiong Y B, Wang R M. RSC Adv., 2015, 5:76211.
[56] Zhang G, Wang D Y, Mohwald H. Nano Lett., 2005, 5:143.
[57] Wang D, Mbhwald H. J. Mater. Chem., 2004, 14:459.
[58] Sotiriou G A, Hirt A M, Lozach P Y, Teleki A, Krumeich F, Pratsinis S E. Chem. Mater., 2011, 23:1985.
[59] Ray C, Pal T. J. Mater. Chem. A, 2017, 5:9465.
[60] Reguera J,Aberasturi D J D, Winckelmans N, Langer J, Bals S, Liz-Marzan M L. Faraday Discuss., 2016, 191:47.
[61] Panwar K, Jassel M, Agrawal A K. Appl. Surf. Sci., 2017, 411:368.
[62] Millman B K, Prevo B G, Velev O D. Nat. Mater., 2005, 4:98.
[63] Biji P, Patnaik A. Analyst, 2012, 137:4795.
[64] Sokolovskaya E, Rahmani S, Misra A C, Brase S, Lahann J. ACS Appl. Mater. Interfaces, 2015, 7:9744.
[65] Suci P A, Kang S, Young M, Douglas T. J. Am. Chem. Soc., 2009, 131:9164.
[66] Lan J W, Chen J Y, Li N X, Ji X H, Yu M X, He Z K. Talanta, 2016, 151:126.
[67] Lu C, Liu X J, Li Y F, Yu F, Tang L H, Hu Y J, Ying Y B. ACS Appl. Mater. Interfaces, 2015, 7:15395.
[68] Cao H, Yang Y H, Chen X, Shao Z Z. Nanoscale, 2016, 8:6754.
[69] Sun X T, Zhang Y, Zheng D H, Yue S, Yang C G, Xu Z R. Biosens. Bioelectron., 2017, 92:81.
[70] Li P, Li K, Niu X F, Fan Y B. RSC Adv., 2016, 6:99034.
[71] Chen B, Jia Y L, Gao Y, Sanchez L, Anthony S M, Yu Y. ACS Appl. Mater. Interfaces, 2014, 6:18435.
[72] Lee K, Yu Y. J. Mater. Chem. B, 2017, 5:4410.
[73] Sanchez L, Yi Y, Yu Y. Nanoscale, 2017, 9:288.
[74] Rucinskaite G, Thompson S A, Paterson A, Rica R D L. Nanoscale, 2017, 9:5404.
[75] Chang Z M, Wang Z, Lu M M, Shao D, Yue J, Yang D, Li M Q, Dong W F. Colloid Surf. B:Biointerfaces, 2017, 157:199.
[76] Li W X, Dong H, Tang G N, Ma T, Cao X D. RSC Adv., 2015, 5:23181.
[77] Wang X X, Cao D W, Tang X J, Yang J J, Jiang D Y, Liu M, He N Y, Wang Z F. ACS Appl. Mater. Interfaces, 2016, 8:19321.
[78] Zhang M J, Zhang L Y, Chen Y D, Li L, Su Z M, Wang C G. Chem Sci., 2017, 8:8067.
[79] He W P, Frueh J, Hu N, Liu L P, Gai M Y, He Q. Adv. Sci., 2016, 3:1600206.
[80] Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. ACS Appl. Mater. Interfaces, 2015, 7:21218.
[81] Liu Y J, Hu J K, Yu X T, Xu X Y, Gao Y, Li H M, Liang F X. J. Colloid Interface Sci., 2017, 490:357.
[82] Seo Y D, Lee C, Lee K J, Jang J. Chem. Commun., 2016, 52:9825.
[83] Cao W, Huang R L, Qi W, Su R X, He Z M. ACS Appl. Mater. Interfaces, 2015, 7:465.
[84] Wang J H, Huang R L, Qi W, Su R X, He Z M. Langmuir, 2017, 33:12317.
[85] Cao Z L, Chen H N, Zhu S D, Zhang W W, Wu X F, Shan G R, Ziener U, Qi D M. Langmuir, 2015, 31:4341.
[86] Kuttiyiel K A, Sasaki K, Park G G, Vukmirovic M B, Wu L J, Zhu Y M, Chen J G, Adzic R R. Chem. Commun., 2017, 53:1660.
[87] Binks B P, Fletcher P D I. Langmuir, 2001, 17:4708.
[88] Xue W, Yang H Q, Du Z P. Langmuir, 2017, 33:10283.
[89] Wei D, Ge L L, Lu S H, Li J J, Guo R. Langmuir, 2017, 33:5819.
[90] Yang P H, Huang J J, Sun W, Wei Y J, Liu Y W, Ding L Y, Bao J B, Chen Z R. RSC Adv., 2016, 6:55860.
[91] 杨平辉(Yang P H), 朱嘉峰(Zhu J F), 孙巍(Sun W), 周婉蓉(Zhou W R). 高等学校化学学报(Chemical Journal of Chinese University), 2017, 38(4):678.
[92] Li W L, Cai X J, Ma S H, Zhan X H, Lan F, Wu Y, Gu Z W. RSC Adv., 2016, 6:40450.
[93] Noguchi T G, Iwashita Y, Kimura Y. Langmuir, 2017, 33:1030.
[94] Xie G J, Krys P, Tilton R D, Matyjaszewski K. Macromolecules, 2017, 50:2942.
[95] Zhai W Z, Wang B, Wang Y S, He Y F, Song P F, Wang R M. Colloid Surf., A:Physicochem. Eng. Aspects., 2016, 503:94.
[96] Tang L, Yang J, Yin Q Q, Yang L H, Dong D Y, Qin F, Liu J Y, Fan Q, Li J H, Zhao W L, Zhang W Y, Wang J Y, Zhu T, Zhang W S, Liu J. Chem. Commun., 2017, 53:8675.
[97] Kim H, Cho J, Cho J, Park B J, Kim J W. ACS Appl. Mater. Interfaces, 2018, 10, 1408.
[98] Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S. Adv. Mater., 2010, 22:1060.
[99] Lee J, Yezer B A, Prieve D C, Behrens S H.Langmuir, 2016, 32:3095.
[100] Fujii S, Yokoyama Y C, Nakayama S, Ito M, Yusa S, Nakamura Y. Langmuir, 2018, 34, 933.
[101] Yang Q Y, Loos K. Polym. Chem., 2017, 8:641.
[102] Han D, Wen T J, Han G, Deng Y, Deng Y, Zhang Q, Fu Q. Polymer, 2018, 136:84.
[103] Wang H T, Fu Z A, Zhao X W, Li Y J, Li J Y. ACS Appl. Mater. Interfaces, 2017, 9:14358.
[104] Panwar K, Jassel M, Agrawal A K. Surf. Coat. Technol., 2017, 309:897.
[105] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R. Phys. Rev. Lett., 2007, 99, 048102.
[106] Ma X, Jannasch A, Albrecht U R, Hahn K, Miguel-Lopez A, Schaffer E, Sanchez A. Nano Lett., 2015, 15:7043.
[107] Ma X, Jang S, Popescu M N, Uspal W E, Miguel-Lopez A, Hahn K, Kim D P, Sanchez S. ACS Nano, 2016,10, 8751.
[108] Moo J G S, Wang H, Pumera M. Chem. Eur. J., 2016, 22:355.
[109] Banerjee I, Pangule R C, Kane R S. Adv. Mater., 2011, 23, 690.
[110] Almeida E, Diamantino T C, De S O. Prog. Org. Coat., 2007, 59, 2.
[111] Kiriiiova A, Marschellke C, Friedrichs J, Werner C, Synytska A. ACS Appl. Mater. Interfaces, 2016, 8:32591.
[112] Kiriiiova A, Ionov L, Rosiman I V, Synytska A. Chem. Mater., 2016, 28:6995.
[113] Pan D, Mou F Z, Li X F, Deng Z Y, Sun J, Xu L, Guan J G. J. Mater. Chem. A, 2016, 4:11768.
[114] Ei-sherif R M, Lasheen T A, Jebril E A. J. Mol. Liq., 2017, 241:260.
[115] Park J W, Na W, Jang J. J. Mater. Chem. A, 2016, 4:8263.
[1] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[2] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[3] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[4] 易成林, 杨逸群, 江金强, 刘晓亚, 江明. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(01): 65-79.
[5] 陈云华,王朝阳,李煜,童真. Janus粒子制备研究*[J]. 化学进展, 2009, 21(04): 615-621.
阅读次数
全文


摘要

Janus粒子的制备及功能化应用