English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1908-1919 DOI: 10.7536/PC180217 前一篇   后一篇

• 综述 •

纳米粒子在药物传递中的应用

张咚咚1, 刘敬民2, 刘瑶瑶1, 党梦1, 方国臻1, 王硕1,2*   

  1. 1. 天津科技大学 食品营养与安全教育部重点实验室 天津 300457;
    2. 南开大学医学院 天津市食品科学与健康重点实验室 天津 300071
  • 收稿日期:2018-02-11 修回日期:2018-05-27 出版日期:2018-12-15 发布日期:2018-08-17
  • 通讯作者: 王硕 E-mail:s.wang@tust.edu.cn
  • 基金资助:
    天津市科技计划项目(No.17ZYPTJC00050)资助

The Application of Nanoparticles in Drug Delivery

Dongdong Zhang1, Jingmin Liu2, Yaoyao Liu1, Meng Dang1, Guozhen Fang1, Shuo Wang1,2*   

  1. 1. Key Laboratory of Food Nutrition and Safety of Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
    2. Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
  • Received:2018-02-11 Revised:2018-05-27 Online:2018-12-15 Published:2018-08-17
  • Supported by:
    The work was supported by the Science and Technology Program of Tianjin, China(No. 17ZYPTJC00050).
目前,利用纳米粒子传递药物并用于恶性肿瘤组织的靶向识别,进一步提高肿瘤的诊断和治疗水平是一个比较热点的领域,人们期望用制备容易、价格便宜、毒性小的纳米技术来提高肿瘤的治疗效率。然而,由近年的报道来看,所摄入的纳米粒子仅有约0.7%能够到达肿瘤部位,传递效率较低,这无疑加大了治疗应用的难度。本综述中,我们分析了造成纳米粒子靶向药物转运效率较低的原因,包括纳米粒子的转运途径,纳米粒子转运过程中所遇到的屏障,纳米粒子在体内的清除途径等;随后我们介绍了较早应用的聚合物纳米粒子、磁性氧化铁纳米粒子以及目前广泛研究的介孔二氧化硅纳米粒子在药物传递系统构建中的应用情况,还介绍了细胞膜仿生纳米粒子在药物传递系统中的应用;最后,对纳米粒子在药物传递中的研究进行总结和展望。我们希望通过对纳米粒子传递药物的系统研究,进一步促进纳米粒子在药物传递上的研究,加速纳米药物的临床应用。
At present, application of nanoparticles for drug delivery and tumor targeting has become a very popular concept to improve the diagnosis and treatment level of tumor tissues. People have long expected to use nanotechnology, which is easy to manufacture, cost effective, low toxic, to improve the efficiency of treatment. However, the transfer efficiency is extremely low according to the reported literature, only about 0.7% of the administered nanoparticles reach tumor. In this paper, we analyze the influence factor of low efficiency on nanoparticle targeted delivery, including transport pathway of nanoparticles, the barrier in the course of nanoparticles transport, and in vivo clearance of nanoparticles. For the applications of nanoparticles, firstly, we introduce the preparation methods of polymer nanoparticles and the current application in clinic; followed by the introduction of iron oxide nanoparticles, which has great potential clinical application value, combined with drug by different binding modes; we also introduce the widely studied mesoporous silica nanoparticles and its several different drug delivery systems. The biomimetic nanoparticles of cell membrane is also recommended due to its great advantage in constructing drug delivery system. Finally, the future research of nanoparticles in drug delivery is prospected. We hope that we could promote the application of nanoparticles in drug delivery and accelerate the clinical translation of nanomedicine through systematic study on nanoparticles delivery.
Contents
1 Introduction
2 The delivery efficiency of nanoparticles and consequences
3 The barrier in the course of nanoparticles transport
4 The in vivo clearance of nanoparticles
4.1 Mononuclear phagocytic system identificaion
4.2 Macrophage uptake nanoparticles
4.3 Renal clearance
5 The toxicity of nanoparticles
6 The application of nanoparticles in drug delivery
6.1 Polymer nanoparticles
6.2 Magnetic iron oxide nanoparticles
6.3 Mesoporous silica nanoparticles
6.4 Biomimetic nanoparticles of cell membrane
7 Conclusion

中图分类号: 

()
[1] Zhang N, Li M, Sun X, Jia H, Liu W. Biomaterials, 2018, 159:25.
[2] Durymanov M, Kamaletdinova T, Lehmann S E, Reineke J. J. Control Release, 2017, 261:10.
[3] Kinnear C, Moore T L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Chem. Rev., 2017, 117:11476.
[4] Chen L J, Yang C X, Yan X P. Anal. Chem., 2017, 89:6936.
[5] Qiu W X, Liu L H, Li S Y, Lei Q, Luo G F, Zhang X Z. Small, 2017, 13.
[6] Liu J M, Liu Y Y, Zhang D D, Fang G Z, Wang S. ACS Appl. Mater. Inter., 2016, 8:29939.
[7] Ding X, Hao X, Fu D, Zhang M, Lan T, Li C, Huang R, Zhang Z, Li Y, Wang Q, Jiang J. Nano Research, 2017, 10:3124.
[8] Chen G, Wang Y, Xie R, Gong S. J. Control Release, 2017, 259:105.
[9] Brunella V, Jadhav S A, Miletto I, Berlier G, Ugazio E, Sapino S, Scalarone D. Reactive and Functional Polymers, 2016, 98:31.
[10] Chou L Y T, Zagorovsky K, Chan W C W. Nat. Nanotech., 2014, 9:148.
[11] Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y. Theranostics, 2017, 7:2575.
[12] Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Adv. Cancer Res., 2018, 137:115.
[13] Weaver J L, Tobin G A, Ingle T, Bancos S, Stevens D, Rouse R, Howard K E, Goodwin D, Knapton A, Li X H, Shea K, Stewart S, Xu L, Goering P L, Zhang Q, Howard P C, Collins J, Khan S, Sung K, Tyner K M. Particle and Fibre Toxicology, 2017, 14:25.
[14] Chamseddine I M, Kokkolaras M. Journal of Biomechanical Engineering, 2018, 140:4.
[15] Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Nat. Rev. Mater., 2016, 1:12.
[16] Urbanavicius D, Alvarez T, Such G, Johnston A, Mintern J. Mol. Immunol., 2018, 98:2.
[17] Zhang N, Zhang J, Wang P, Liu X, Huo P, Xu Y, Chen W, Xu H, Tian Q. Anticancer Drugs, 2018, 29:307.
[18] Dawidczyk C M, Kim C, Park J H, Russell L M, Lee K H, Pomper M G, Searson P C. J. Control Release, 2014, 187:133.
[19] Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, Hermanns-Sachweh B, Pechar M, Ulbrich K, Hennink W E, Storm G, Lederle W, Kiessling F, Lammers T. Nano Lett., 2014, 14:972.
[20] Ho Y J, Chang Y C, Yeh C K. Theranostics, 2016, 6:392.
[21] Sykes E A, Chen J, Zheng G, Chan W C W. ACS Nano, 2014, 8:5696.
[22] Wagner M, Wiig H. Front. Oncol., 2015, 5:115.
[23] Maeda H, Nakamura H, Fang J. Adv. Drug Deliver. Rev., 2013, 65:71.
[24] Kobayashi H, Watanabe R, Choyke P L. Theranostics, 2014, 4:81.
[25] Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W. Nat. Rev. Mater., 2016, 1:16014.
[26] Pickup M W, Mouw J K, Weaver V M. Embo. Rep., 2014, 15:1243.
[27] Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J. Control Release, 2015, 200:138.
[28] Zhang YN, Poon W, Tavares A J, McGilvray I D, Chan W C W. J. Control Release, 2016, 240:332.
[29] Weissleder R, Nahrendorf M, Pittet M J. Nat. Mater., 2014, 13:125.
[30] Fischer H C, Hauck T S, Gomez-Aristizabal A, Chan W C W. Adv. Mater., 2010, 22:2520.
[31] Syed A, Chan W C W. Cancer Treatment and Research, 2015, 166:227.
[32] Naidu P S R, Norret M, Smith N M, Dunlop S A, Taylor N L, Fitzgerald M, Iyer K S. Langmuir, 2017, 33:12926.
[33] Corbo C, Molinaro R, Parodi A, Toledano Furman N, Salvatore F, Tasciotti E. Nanomedicine, 2016, 11:81.
[34] Nair A V, Keliher E J, Core A B, Brown D, Weissleder R. ACS Nano, 2015, 9:3641.
[35] Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Molecules, 2017, 22:1439.
[36] Nolte T M, Hartmann N B, Kleijn J M, Garnæs J, van de Meent D, Jan Hendriks A, Baun A. Aquat. Toxicol., 2017, 183:11.
[37] Wu Z, Guan R, Tao M, Lyu F, Cao G, Liu M, Gao J. RSC Adv., 2017, 7:12437.
[38] Zhang D D, Liu J M, Song N, Liu Y Y, Dang M, Fang G Z, Wang S. J. Mater. Chem. B, 2018, 6:1479.
[39] Liu J M, Zhang D D, Fang G Z, Wang S. Biomaterials, 2018, 165:39.
[40] Liu Y Y, Liu J M, Zhang D D, Ge K, Wang P, Liu H, Fang G, Wang S. J. Agric. Food Chem., 2017.
[41] Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tu Dc ek J, Zboril R. Chem. Rev., 2016, 116:5338.
[42] Mamaeva V, Rosenholm J M, Bate-Eya L T, Bergman L, Peuhu E, Duchanoy A, Fortelius L E, Landor S, Toivola D M, Lindén M, Sahlgren C. Mol. Ther., 2011, 19:1538.
[43] Tagami T, Ozeki T. J. Pharm. Sci., 2017, 106:2219.
[44] Bazak R, Houri M, El Achy S, Kamel S, Refaat T. J. Cancer Res. Clin., 2015, 141:769.
[45] Rao J P, Geckeler K E. Prog. Polym. Sci., 2011, 36:887.
[46] Ojima I, Lichtenthal B, Lee S, Wang C W, Wang X. Expert. Opin. Ther. Pat., 2016, 26:1.
[47] Feng L, Mumper R J. Cancer Lett., 2013, 334:157.
[48] McKiernan J M, Lascano D, Ahn J, Ghandour R, Pak J S, RoyChoudhury A, Chang S, DeCastro G J, Desai N. J. Clin. Oncol., 2015, 33:1.
[49] Daldrup-Link H E. Radiology, 2017, 284:616.
[50] Aguiar M F D, Mamani J B, Felix T K, dos Reis R F, da Silva H R, Nucci L P, Nucci-da-Silva M P, Gamarra L F. Nanotechnol. Rev., 2017, 6:449.
[51] Al Dine E J, Ferjaoui Z, Ghanbaja J, Roques-Carmes T, Meftah A, Hamieh T, Toufaily J, Schneider R, Marchal S, Gaffet E, Alem H. Int. J. Pharm., 2017, 532:738.
[52] Sabale S, Kandesar P, Jadhav V, Komorek R, Motkuri R, Yu X. Biomater. Sci., 2017, 5:2212.
[53] Jamal Al Dine E, Ferjaoui Z, Ghanbaja J, Roques-Carmes T, Meftah A, Hamieh T, Toufaily J, Schneider R, Marchal S, Gaffet E, Alem H. Int. J. Pharm., 2017, 532:738.
[54] Sabale S, Kandesar P, Jadhav V, Komorek R, Motkuri R K, Yu X Y. Biomater. Sci. -UK, 2017, 5:2212.
[55] Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tu Dc ek J, Zboril R. Chem. Rev., 2016, 116:5338.
[56] Mendes A C, Baran E T, Reis R L, Azevedo H S. Wires. Nanomed. Nanobi., 2013, 5:582.
[57] Kaittanis C, Shaffer T M, Ogirala A, Santra S, Perez J M, Chiosis G, Li Y, Josephson L, Grimm J. Nat. Commun., 2014, 5:3384.
[58] Heid S, Unterweger H, Tietze R, Friedrich R P, Weigel B, Cicha I, Eberbeck D, Boccaccini A R, Alexiou C, Lyer S. Int. J. Mol. Sci., 2017, 18:1837.
[59] Wang HC, Zhang Y, Possanza C M, Zimmerman S C, Cheng J, Moore J S, Harris K, Katz J S. ACS Appl. Mater. Inter., 2015, 7:6369.
[60] Pongrac I M, Pavicic I, Milic M, Ahmed L B, Babic M, Horak D, Vrcek I V, Gajovic S. Int. J. Nanomed., 2016, 11:1701.
[61] Lee N, Yoo D, Ling D, Cho M H, Hyeon T, Cheon J. Chem. Rev., 2015, 115:10637.
[62] Friedrich R P, Zaloga J, Schreiber E, Toth I Y, Tombacz E, Lyer S, Alexiou C. Nanoscale Research Letters, 2016, 11:11.
[63] Hyder F, Manjura Hoque S. Contrast Media Mol. Imaging, 2017, 2017:6387217.
[64] Xu H, Yang J, ZhuGe D, Lin M, Zhu Q, Jin B, Tong M, Shen B, Xiao J, Zhao Y. Adv. Healthc. Mater., 2018, 7:e1701130.
[65] de Paula Aguiar M F, Mamani J B, Felix T K, dos Reis R F, da Silva H R, Nucci L P, Nucci-da-Silva M P, Gamarra L F. Nanotechnol. Rev., 2017, 6:449.
[66] Chen C, Sun W, Wang X, Wang Y, Wang P. Mater. Sci. Eng. C, 2018, 85:88.
[67] Kong M, Tang J, Qiao Q, Wu T, Qi Y, Tan S, Gao X, Zhang Z. Theranostics, 2017, 7:3276.
[68] Sweeney S K, Luo Y, O'Donnell M A, Assouline J G. Journal of Biomedical Nanotechnology, 2017, 13:232.
[69] Mortazavi-Derazkola S, Salavati-Niasari M, Khojasteh H, Amiri O, Ghoreishi S M. J. Clean. Prod., 2017, 168:39.
[70] Zeng D, Zhang X, Wang X, Cao L, Zheng A, Du J, Li Y, Huang Q, Jiang X. Int. J. Nanomedicine, 2017, 12:8277.
[71] Wang Y, Sun L, Jiang T, Zhang J, Zhang C, Sun C, Deng Y, Sun J, Wang S. Drug Dev. Ind. Pharm., 2014, 40:819.
[72] Li W Q, Guo Z M, Zheng K, Ma K, Cui C H, Wang L, Yuan Y, Tang Y. Int. J. Pharm., 2017, 534:71.
[73] Luo L, Liang Y, Erichsen E, Anwander R. J. Colloid Interface Sci., 2017, 495:84.
[74] Carriazo D, Del Arco M, Fernandez A, Martin C, Rives V. J. Pharm. Sci., 2010, 99:3372.
[75] Kaziem A, Gao Y, He S, Li J. J. Agric. Food Chem., 2017, 65:7854.
[76] Gounani Z, Asadollahi M, Meyer R, Arpanaei A. Int. J. Pharm., 2018, 537:148.
[77] Shah P V, Rajput S J. AAPS PharmSciTech, 2018, 9:1344.
[78] Jia X, Yang Z, Wang Y, Chen Y, Yuan H, Chen H, Xu X, Gao X, Liang Z, Sun Y, Li JR, Zheng H, Cao R. ChemMedChem, 2018, 13:400.
[79] Cho I H, Shim M K, Jung B, Jang E H, Park M J, Kang H C, Kim J H. Micropor. Mesopor. Mater., 2017, 253:96.
[80] Yue X, Zhang Q, Dai Z. Adv. Drug Deliver. Rev., 2017, 115:155.
[81] Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q. Biosens. Bioelectron., 2018, 100:512.
[82] Chen C, Sun W, Wang X, Wang Y, Wang P. Materials Science and Engineering:C, 2018, 85:88.
[83] Chen C, Sun W, Wang X, Wang Y, Wang P. Int. J. Biol. Macromol., 2018, 111:1106.
[84] Lu N, Tian Y, Tian W, Huang P, Liu Y, Tang Y, Wang C, Wang S, Su Y, Zhang Y, Pan J, Teng Z, Lu G. ACS Appl. Mater. Inter., 2016, 8:2985.
[85] Zhou J, Li M, Lim W Q, Luo Z, Phua S Z F, Huo R, Li L, Li K, Dai L, Liu J, Cai K, Zhao Y. Theranostics, 2018, 8:518.
[86] Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Molecules, 2018, 23:47.
[87] Shao D, Lu M M, Zhao Y W, Zhang F, Tan Y F, Zheng X, Pan Y, Xiao X A, Wang Z, Dong W F, Li J, Chen L. Acta Biomaterialia, 2017, 49:531.
[88] Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Chem. Soc. Rev., 2017, 46:6024.
[89] Luk B, Zhang L. J. Control Release, 2015, 220:600.
[90] Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W. Biomaterials, 2017, 143:29.
[91] Rao L, He Z, Meng Q, Zhou Z, Bu L, Guo S, Liu W, Zhao X. J. Biomed. Mater. Res. A, 2017, 105:521.
[92] Fang R, Hu C, Luk B, Gao W, Copp J, Tai Y, O'Connor D, Zhang L. Nano Lett., 2014, 14:2181.
[93] Xuan M, Shao J, Dai L, He Q, Li J. Adv. Healthc. Mater., 2015, 4:1645.
[94] Luk B, Fang R, Hu C, Copp J, Thamphiwatana S, Dehaini D, Gao W, Zhang K, Li S, Zhang L. Theranostics, 2016, 6:1004.
[95] Hu C, Zhang L, Aryal S, Cheung C, Fang R, Zhang L. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:10980.
[96] Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, Sha X. Biomaterials, 2016, 92:13.
[97] Zhang L, Li R, Chen H, Wei J, Qian H, Su S, Shao J, Wang L, Qian X, Liu B. Int. J. Nanomedicine, 2017, 12:2129.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[3] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[4] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[5] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[6] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[7] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[8] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[9] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[10] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[11] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[12] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[13] 谭晓晓, 李国帅, 王庆鹏, 王炳全, 李大成, 王鹏. 作为抗肿瘤药物的小分子四价铂[J]. 化学进展, 2018, 30(6): 831-846.
[14] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.
[15] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
阅读次数
全文


摘要

纳米粒子在药物传递中的应用