English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1701-1721 DOI: 10.7536/PC180132 前一篇   后一篇

所属专题: 电化学有机合成

• 综述 •

电化学石英晶体微天平的应用

魏晓妍, 王刚*, 李岸峰, 权一舟, 陈金伟, 王瑞林*   

  1. 四川大学材料科学与工程学院 成都 610065
  • 收稿日期:2018-01-29 修回日期:2018-05-21 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 王刚,e-mail:electrowg100@scu.edu.cn;王瑞林,e-mail:rl.wang@scu.edu.cn E-mail:electrowg100@scu.edu.cn;rl.wang@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51602209)、四川省科技支撑计划项目(No.2016GZ0423)和中央高校基本科研业务费专项资金(No.YJ201746,2018SCUH0025)资助

Application of Electrochemical Quartz Crystal Microbalance

Xiaoyan Wei, Gang Wang*, Anfeng Li, Yizhou Quan, Jinwei Chen, Ruilin Wang*   

  1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • Received:2018-01-29 Revised:2018-05-21 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51602209), the Provincial Natural Science Foundation of Sichuan (No.2016GZ0423),and the Fundamental Research Funds for the Central Universities(No.YJ201746, 2018SCUH0025).
电化学石英晶体微天平(EQCM)即石英晶体微天平(QCM)与电化学检测相结合的测试技术。电化学石英晶体微天平以其简单、快速,可以在纳克级水平上对活性物质在石英晶振片上发生的沉积、吸附或溶解等过程进行动态检测等优势而成为表界面反应研究的有效手段之一。由于EQCM测试技术为原位测试方法,可以实现在线实时监测,利用其高精度和高灵敏度可以进一步对表界面上发生反应的过程及深层次的机理进行分析。本文就EQCM在电化学、生物医学及油田化学等领域以及研究机理及动力学等方面的应用进行了总结阐述,提出了EQCM的研究新方向以及发展中面临的问题。
Electrochemical Quartz Crystal Microbalance (EQCM) is a testing technique that combines quartz crystal microbalance (QCM) and electrochemical detection. EQCM is one of effective methods to study the surface reaction due to its simplicity, rapidness, and the ability to dynamically detect the deposition, adsorption, or dissolution of an active material on a quartz crystal at nanogram level. At the same time, because the EQCM testing technology is an in-situ testing method, online real-time monitoring can be realized. With its high precision and high sensitivity, it is possible to further analyze the reaction process and deep-level mechanism at the surface interface. This paper summarizes the application of EQCM in the fields of electrochemical, biomedical and oil field chemistry, as well as research mechanism and dynamics, and puts forward the new research direction of EQCM and the problems in its development.
Contents
1 Introduction
2 Application of EQCM in electrochemistry
2.1 Application of EQCM in electro-synthesis
2.2 Application of EQCM in electrode-position and dissolution
2.3 Application of EQCM in adsorption and desorption
2.4 Application of EQCM in polymer modified electrode
2.5 Membrane ionic, charge conduction movement and determination
2.6 EQCM in energy conversion and storage applications
3 Application of EQCM in biomedical and oilfield chemistry
4 Application of EQCM in other areas
4.1 Gas detection
4.2 Structural characterization
5 Application of EQCM in study of the reaction process of kinetics and mechanism
5.1 Study of reaction mechanism by EQCM
5.2 Study on thermodynamics and kinetics of reaction process by EQCM
6 Conclusion

中图分类号: 

()
[1] Hung C C, Lim P Y, Chen J R, Shih H C. Journal of Power Sources, 2011, 196:140.
[2] 徐竹(Xu Z), 刘晓静(Liu X J). 化工新型材料(New Chemical Materials), 2015:38.
[3] Baker C K, Qiu Y J, Reynolds J R. Journal of Physical Chemistry, 1991, 95:4446.
[4] Bose C S C, Basak S, Rajeshwar K. Journal of Physical Chemistry, 1992, 96:9899.
[5] Chung S M, Paik W K, Yeo I H. Synthetic Metals, 1997, 84:155.
[6] Xie Q J, Kuwabata S, Yoneyama H. Journal of Electroanalytical Chemistry, 1997, 420:219.
[7] Kontturi K, Murtomaki L, Pentti P, Sundholm G. Synthetic Metals, 1998, 92:179.
[8] Hwang B J, Shieh D T, Chieh W C, Liaw D J, Li L J. Thin Solid Films, 1997, 301:175.
[9] Plausinaitis D, Sinkevicius L, Mikoliunaite L, Plausinaitiene V, Ramanaviciene A, Ramanavicius A. Physical Chemistry Chemical Physics, 2017, 19:1029.
[10] Daprano G, Leclerc M, Zotti G, Schiavon G. Chemistry of Materials, 1995, 7:33.
[11] Baba A, Tian S J, Stefani F, Xia C J, Wang Z H, Advincula R C, Johannsmann D, Knoll W. Journal of Electroanalytical Chemistry, 2004, 562:95.
[12] Shimazu K, Yagi I, Sato Y, Uosaki K. Langmuir, 1992, 8:1385.
[13] Naoi K, Oura Y, Iwamizu Y, Oyama N. Journal of the Electrochemical Society, 1995, 142:354.
[14] Bacskai J, Martinusz K, Czirok E, Inzelt G, Kulesza P J, Malik M A. Journal of Electroanalytical Chemistry, 1995, 385:241.
[15] Kvarnstrom C, Neugebauer H, Blomquist S, Ahonen H J, Kankare J, Ivaska A. Electrochimica Acta, 1999, 44:2739.
[16] Aurbach D, Moshkovich M, Cohen Y, Schechter A. Langmuir, 1999, 15:2947.
[17] Cheng L, Niu L, Gong J, Dong S J. Chemistry of Materials, 1999, 11:1465.
[18] Ferreira M, Varela H, Torresi R M, Tremiliosi-Filho G. Electrochimica Acta, 2006, 52:434.
[19] Vrubel H, Hu X. ACS Catalysis, 2013, 3:2002.
[20] Alhedabi T, Cattey H, Roussel C, Blondeau-Patissier V, Gharbi T, Herlem G. Materials Chemistry and Physics, 2017, 185:183.
[21] Uosaki K, Ye S, Naohara H, Oda Y, Haba T, Kondo T. Journal of Physical Chemistry B, 1997, 101:7566.
[22] Bohannan E W, Huang L Y, Miller F S, Shumsky M G, Switzer J A. Langmuir, 1999, 15:813.
[23] Chen S M. Journal of Electroanalytical Chemistry, 2002, 521:29.
[24] 李云龙(Li Y L), 谢青季(Xie Q J), 姚守拙(Yao S Z). 应用化学(Applied Chemistry), 2007:628.
[25] 蒋雪琴(Jiang X Q), 曹志军(Cao Z J), 谢青季(Xie Q J), 姚守拙(Yao S Z). 物理化学学报(Journal of Physical Chemistry), 2008:230.
[26] Abbott A P, El Ttaib K, Frisch G, McKenzie K J, Ryder K S. Physical Chemistry Chemical Physics, 2009, 11:4269.
[27] Thomas S, Kowalski D, Molinari M, Mallet J. Electrochimica Acta, 2018, 265:166.
[28] Aurbach D, Moshkovich M. Journal of the Electrochemical Society, 1998, 145:2629.
[29] Aurbach D, Moshkovich M, Schechter A, Turgeman R. Electrochemical and Solid State Letters, 2000, 3:31.
[30] Lu Z, Schechter A, Moshkovich M, Aurbach D. Journal of Electroanalytical Chemistry, 1999, 466:203.
[31] 陈国良(Chen G L), 卢江红(Lu J H), 董小玉(Dong X Y), 李芳启(Li F Q), 方敏敏(Fang M M), 洪苏敏(Hong S M), 罗志英(Luo Z Y), 潘佳妹(Pan J M). 漳州师范学院学报(自然科学版)(Journal of Zhangzhou Normal University (Natural Science Edition)), 2005:50.
[32] 郭艺容(Guo Y R), 林珩(Lin Y), 李凯(Li K), 林燕美(Lin Y M), 林华(Lin H), 陈碧桑(Chen B S), 汪庆祥(Wang Q X), 陈国良(Chen G L).第十一届全国电分析化学会议(The Eleventh National Conference on Electroanalytical Chemistry). 2011. 2.
[33] Scendo M. Corrosion Science, 2007, 49:373.
[34] Joiret S, Keddam M, Novoa X R, Perez M C, Rangel C, Takenouti H. Cement & Concrete Composites, 2002, 24:7.
[35] Escudero-Escribano M, Pedersen A F, Paoli E A, Frydendal R, Friebel D, Malacrida P, Rossmeisl J, Stephens I E L, Chorkendorff I. The Journal of Physical Chemistry B, 2017.
[36] Schneider T W, Buttry D A. Journal of the American Chemical Society, 1993, 115:12391.
[37] Naohara H, Ye S, Uosaki K. Journal of Physical Chemistry B, 1998, 102:4366.
[38] Jusys Z, Massong H, Baltruschat H. Journal of the Electrochemical Society, 1999, 146:1093.
[39] Santos M C, Miwa D W, Machado S A S. Electrochemistry Communications, 2000, 2:692.
[40] Kawaguchi T, Yasuda H, Shimazu K, Porter M D. Langmuir, 2000, 16:9830.
[41] Levi M D, Levy N, Sigalov S, Salitra G, Aurbach D, Maier J. Journal of the American Chemical Society, 2010, 132:13220.
[42] Levi M D, Sigalov S, Salitra G, Aurbach D, Maier J. Chemphyschem, 2011, 12:854.
[43] Antonio J L, Hofler L, Lindfors T, de Torresi S I C. Chemelectrochem, 2016, 3:2146.
[44] Zotti G, Schiavon G, Zecchin S. Synthetic Metals, 1995, 72:275.
[45] Naoi K, Oura Y, Maeda M, Nakamura S. Journal of the Electrochemical Society, 1995, 142:417.
[46] Zotti G, Zecchin S, Schiavon G, Groenendaal L. Chemistry of Materials, 2000, 12:2996.
[47] Thiagarajan S, Chen S M. Talanta, 2007, 74:212.
[48] Neubert T J, Rosicke F, Sun G G, Janietz S, Gluba M A, Hinrichs K, Nickel N H, Rappich J. Applied Surface Science, 2017, 392:975.
[49] Delong H C, Donohue J J, Buttry D A. Langmuir, 1991, 7:2196.
[50] Naoi K, Oyama N. Proceeding of the Symposium on High Power, Ambient Temperature Lithium Batteries, 1992. 187.
[51] Demoustierchampagne S, Reynolds J R, Pomerantz M. Chemistry of Materials, 1995, 7:277.
[52] Snyder S R, White H S. Journal of Physical Chemistry, 1995, 99:5626.
[53] Shouji E, Okamoto Y, Ozaki F, Naoi K. Polymers for Advanced Technologies, 1996, 7:177.
[54] Barbero C, Miras M C, Haas O, Kotz R. Journal of the Electrochemical Society, 1997, 144:4170.
[55] Rahman A, Won M S, Shim Y B. Analytical Chemistry, 2003, 75:1123.
[56] Pralong V, Leriche J B, Beaudoin B, Naudin E, Morcrette M, Tarascon J M. Solid State Ionics, 2004, 166:295.
[57] Weidlich C, Mangold K M, Juttner K. Electrochimica Acta, 2005, 50:1547.
[58] 李慧(Li H), 李越(Li Y), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 刘世斌(Liu S B). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011:1645.
[59] 马旭莉(Ma X L), 张权(Zhang Q), 杜晓(Du X), 郝晓刚(Hao X G), 李修敏(Li X M), 乔文磊(Qiao W L), 李莎莎(Li S S). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2016:2139.
[60] Singh A K, Singh M. Journal of Molecular Recognition, 2017.
[61] Manna B, Raj C R. ACS Sustainable Chemistry & Engineering, 2017, 5:9412.
[62] Medina-Ramos J, Lee S S, Fister T T, Hubaud A A, Sacci R L, Mullins D R, DiMeglio J L, Pupillo R C, Velardo S M, Lutterman D A, Rosenthal J, Fenter P. ACS Catalysis, 2017, 7:7285.
[63] Wilde C P, Zhang M J. Electrochimica Acta, 1994, 39:347.
[64] Hepel M, Chen M Y, Stimming U.Proceedings of New Materials for Fuel Cell Systems,Montreal:Ecole Polytech, 1995.738.
[65] Chen G L, Chen S P, Zhen C H, Zhou Z Y, Sun S G. Acta Chimica Sinica, 2001, 59:1253.
[66] 陈国良(Chen G L), 陈声培(Chen S P), 林珩(Lin Y), 郑杏红(Zheng X H), 孙世刚(Sun S G). 电化学(Electrochemical), 2001:452.
[67] 陈国良(Chen G L), 陈声培(Chen S P), 周志有(Zhou Z Y), 甄春花(Zhen C H), 孙世刚(Sun S G). 电化学(Electrochemical), 2001:96.
[68] 陈国良(Chen G L), 林珩(Lin Y), 林进妹(Lin J M), 林洵(Lin X), 许振芳(Xu Z F), 朱则善(Zhu Z S). 福建师范大学学报(自然科学版)(Journal of Fujian Normal University (Natural Science Edition)), 2002:46.
[69] 陈国良(Chen G L), 陈声培(Chen S P), 林珩(Lin Y), 许振芳(Xu Z F), 林洵(Lin X), 孙世刚(Sun S G). 厦门大学学报(自然科学版)(Journal of Xiamen University(Natural Science Edition)), 2002:211.
[70] 陈国良(Chen G L), 林珩(Lin Y), 林洵(Lin X), 许振芳(Xu Z F), 陈声培(Chen S P). 催化学报(Journal of Catalysis), 2002:157.
[71] 卢江红(Lu J H), 林进妹(Lin J M), 林爱兰(Lin A L), 李鲤燕(Li L Y), 黄如莺(Huang R Y), 陈国良(Chen G L). 福州大学学报(自然科学版)(Journal of Fuzhou University (Natural Science Edition)), 2003:747.
[72] 陈国良(Chen G L), 黄明苍(Huang M C), 林秀梅(Lin X M), 黄如莺(Huang R Y), 胡杰华(Hu J H), 郑子山(Zheng Z S). 漳州师范学院学报(自然科学版) (Journal of Zhangzhou Normal University (Natural Science Edition)),2003:53.
[73] Baranton S, Coutanceau C, Garnier E, Leger J M. Journal of Electroanalytical Chemistry, 2006, 590:100.
[74] Umeda M, Maruta T, Inoue M, Nakazawa A. Journal of Physical Chemistry C, 2008, 112:18098.
[75] Argirusis C, Matic S, Schneider O. Physica Status Solidi A-Applications And Materials Science, 2008, 205:2400.
[76] 黄素清(Huang S Q), 黄钊(Huang Z), 谷铁安(Gu T A), 谢青季(Xie Q J), 姚守拙(Yao S Z). 分析化学(Analytical Chemistry), 2011:978.
[77] 黄钊(Huang Z), 刘艳(Liu Y), 谢青季(Xie Q J), 孟越(Meng Y), 谢芳云(Xie F Y), 马铭(Ma M), 姚守拙(Yao S Z). 第十一届全国电分析化学会议(The Eleventh National Conference on Electroanalytical Chemistry). 2011. 1.
[78] John J, Hugar K M, Rivera-Melendez J, Kostalik H A, Rus E D, Wang H, Coates G W, Abruna H D. Journal of the American Chemical Society, 2014, 136:5309.
[79] Soliman A B, Abdel-Samad H S, Rehim S S A, Ahmed M A, Hassan H H. Journal of Power Sources, 2016, 325:653.
[80] Aurbach D, Zaban A. Journal of the Electrochemical Society, 1995, 142:L108.
[81] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. Journal of Power Sources, 1997, 68:91.
[82] Aurbach D. Journal of Power Sources, 2000, 89:206.
[83] Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. Electrochimica Acta, 2002, 47:1423.
[84] Moshkovich M, Cojocaru M, Gottlieb HE, Aurbach D. Journal of Electroanalytical Chemistry, 2001, 497:84.
[85] Morita M, Shibata T, Yoshimoto N, Ishikawa M. Electrochimica Acta, 2002, 47:2787.
[86] Cohen YS, Aurbach D. Electrochemistry Communications, 2004, 6:536.
[87] Larush-Asraf L, Biton A, Teller H, Zinigrad E, Aurbach D. Journal of Power Sources, 2007, 174:400.
[88] Sharon D, Etacheri V, Garsuch A, Afri M, Frimer A A, Aurbach D. Journal of Physical Chemistry Letters, 2013, 4:127.
[89] Sharon D, Hirsberg D, Afri M, Gorsuch A, Frimer A A, Aurbach D. Journal of Physical Chemistry C, 2014, 118:15207.
[90] Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer A A, Sun Y K, Aurbach D. ACS Applied Materials & Interfaces, 2015, 7:16590.
[91] Sharon D, Hirsberg D, Salama M, Afri M, Frimer A A, Noked M, Kwak W, Sun Y K, Aurbach D. ACS Applied Materials & Interfaces, 2016, 8:5300.
[92] Rosenman A, Elazari R, Salitra G, Markevich E, Aurbach D, Garsuch A. Journal of the Electrochemical Society, 2015, 162:A470.
[93] Jimenez P, Levillain E, Aleveque O, Guyomard D, Lestriez B, Gaubicher J. Angewandte Chemie-International Edition, 2017, 56:1553.
[94] Levi M D, Salitra G, Levy N, Aurbach D, Maier J. Nature Materials, 2009, 8:872.
[95] Levi M D, Sigalov S, Salitra G, Elazari R, Aurbach D. Journal of Physical Chemistry Letters, 2011, 2:120.
[96] Levi M D, Sigalov S, Aurbach D, Daikhin L. Journal of Physical Chemistry C, 2013, 117:14876.
[97] Levi M D, Daikhin L, Aurbach D, Presser V. Electrochemistry Communications, 2016, 67:16.
[98] Ningsih P, Holdsworth C Z, Donne S W. Synthetic Metals, 2014, 196:8.
[99] Zhu J, Xu Y, Wang J, Lin J, Sun X, Mao S. Physical Chemistry Chemical Physics, 2015, 17:28666.
[100] Xing J, Wang Y, Zhu X. Electronic Components and Materials, 2016, 35:70.
[101] Krittayavathananon A, Iamprasertkun P, Sawangphruk M. Carbon, 2016, 109:314.
[102] Jadhav P R, Suryawanshi M P, Dalavi D S, Patil D S, Jo E A, Kolekar S S, Wali A A, Karanjkar M M, Kim J H, Patil P S. Electrochimica Acta, 2015, 176:523.
[103] Gao J, Tian S, Qi L, Yoshio M, Wan H. Journal of Power Sources, 2015, 297:121.
[104] Suktha P, Phattharasupakun N, Dittanet P, Sawangphruk M. RSC Advances, 2017, 7:9958.
[105] Asenjo B, Chaparro A M, Gutierrez M T, Herrero J. Thin Solid Films, 2006, 511:117.
[106] Venkatasamy V, Jayaraju N, Cox S M, Thambidurai C, Happek U, Stickney J L. Journal of Applied Electrochemistry, 2006, 36:1223.
[107] Irshad A, Munichandraiah N. Journal of Physical Chemistry C, 2013, 117:8001.
[108] Pacquette A L. Dissertations & Theses, Gradworks, 2015.
[109] Delong H C, Buttry D A. Langmuir, 1992, 8:2491.
[110] Wang B Q, Zhang J Z, Cheng G J, Dong S J. Analytica Chimica Acta, 2000, 407:111.
[111] Wang J, Jiang M. Langmuir, 2000, 16:2269.
[112] 李金花(Li J H), 胡劲波(Hu J B), 李启隆(Li Q L). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005:1035.
[113] 梁金玲(Liang J L), 吴玲玲(Wu L L), 周剑章(Zhou J Z), 林仲华(Lin Z H). 第十三次全国电化学会议(The 13th National Electrochemical Conference). 2005. 2.
[114] 梁金玲(Liang J L), 周剑章(Zhou J Z), 陈巧琳(Chen Q L), 林玲玲(Lin L L), 林仲华(Lin Z H). 物理化学学报(Journal of Physical Chemistry), 2007:1421.
[115] 苏育华(Su Y H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 第四届海峡两岸分析化学学术会议(The Fourth Cross-Strait Analytical Chemistry Conference). 中国湖北武汉Wuhan, Hubei, China, 2006. p.2.
[116] Shakkthivel P, Chen S M. Biosensors & Bioelectronics, 2007, 22:1680.
[117] Yogeswaran U, Thiagarajan S, Chen S M. Analytical Biochemistry, 2007, 365:122.
[118] Xie X H, Li E L, Tang Z K. Electrochemistry Communications, 2010, 12:600.
[119] 曾艳子(Zeng Y Z), 谢青季(Xie Q J), 周亚平(Zhou Y P), 黄毅(Huang Y), 秦聪(Qin C). 精细化工中间体(Fine chemical intermediates), 2011:48.
[120] 曾艳子(Zeng Y Z). 湖南师范大学博士论文(Doctoral Dissertation of Hunan Normal University), 2012.
[121] Zheng Q, Yang Y, Yan Y, Yu Y, Liu Y, Gao W, Ding K, Shao H. Electrochimica Acta, 2016, 207:135.
[122] 段明(Duan M), 王虎(Wang H), 谢娟(Xie J), 方申文(Fang S W), 郭海军(Guo H J). 油田化学(Oilfield Chemistry), 2009:398.
[123] 王虎(Wang H), 谢娟(Xie J), 段明(Duan M). 中国腐蚀电化学及测试方法专业委员会2012学术年会(Chinese Society of Corrosion Electrochemistry and Testing Methods 2012 Annual Conference). 2012. 1.
[124] 王虎(Wang H), 陈龙驹(Chen L J), 唐鋆磊(Tang Y L), 王小芳(Wang X F), 段明(Duan M). 油田化学(Oilfield Chemistry), 2016:345.
[125] Gupta N, Singh R S, Shah K, Prasad R, Singh M. Journal of Molecular Recognition:JMR, 2018:e2709.
[126] Li F B, Hillman A R, Lubetkin S D, Roberts D J. Journal of Electroanalytical Chemistry, 1992, 335:345.
[127] Dall'Antonia L H, Miyata M E V, de Torresi S I C.Chemical and Biological Sensors and Analytical Methods Ⅱ.San Francisco:Electrochemical Society, 2001-18.76.
[128] Dall'Antonia L H, Vidotti M E, de Torresi S I C, Torresi R M. Electroanalysis, 2002, 14:1577.
[129] Liu S Y, Kao Y H, Su Y O, Perng T P. Journal of Alloys and Compounds, 2001, 316:280.
[130] Pontie M, Gobin C, Pauporte T, Bedioui F, Devynck J. Analytica Chimica Acta, 2000, 411:175.
[131] Shpigel N, Levi MD, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Janes A, Lust E, Jaeckel N, Presser V. Nature Materials, 2016, 15:570.
[132] Teller H, Ohanona S, Kashyap D, Schechter A. Journal of Materials Science, 2016, 51:8471.
[133] Hillman AR, Swann MJ, Bruckenstein S. Journal of Physical Chemistry, 1991, 95:3271.
[134] Visy C, Lukkari J, Kankare J. Synthetic Metals, 1997, 87:81.
[135] Lyon L A, Hupp J T. Journal of Physical Chemistry B, 1999, 103:4623.
[136] Nam K W, Kim K B. Journal of the Electrochemical Society, 2002, 149:A346.
[137] Cohen Y S, Levi M D, Aurbach D. Langmuir, 2003, 19:9804.
[138] Kwabi D G, Tulodziecki M, Pour N, Itkis D M, Thompson C V, Shao-Horn Y. Journal of Physical Chemistry Letters, 2016, 7:1204.
[139] Kelly A J, Naoi K, Ohsaka T, Oyama N. Bunseki Kagaku, 1991, 40:835.
[140] Hillman A R, Loveday D C, Bruckenstein S. Journal of Electroanalytical Chemistry, 1991, 300:67.
[141] Maia G, Torresi R M, Ticianelli E A, Nart F C. Journal of Physical Chemistry, 1996, 100:15910.
[142] Hepel J, Bruckenstein S, Hepel M. Microchemical Journal, 1997, 55:179.
[143] Takada K, Diaz D J, Abruna H D, Cuadrado I, Casado C, Alonso B, Moran M, Losada J. Journal of the American Chemical Society, 1997, 119:10763.
[144] Finsgar M, Lesar A, Kokalj A, Milosev I. Electrochimica Acta, 2008, 53:8287.
[145] Sigalov S, Levi M D, Salitra G, Aurbach D, Maier J. Electrochemistry Communications, 2010, 12:1718.
[146] Tsai W Y, Taberna P L, Simon P. Journal of the American Chemical Society, 2014, 136:8722.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[12] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[13] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
阅读次数
全文


摘要

电化学石英晶体微天平的应用