English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1749-1760 DOI: 10.7536/PC180118 前一篇   后一篇

• 综述 •

分子印迹型二氧化钛及其复合材料的合成和应用

管杰, 孙玲娜, 徐琴*, 胡效亚*   

  1. 扬州大学化学化工学院 扬州 225000
  • 收稿日期:2018-01-22 修回日期:2018-06-16 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 徐琴,e-mail:xuqin@yzu.edu.cn;胡效亚,e-mail:xyhu@yzu.edu.cn E-mail:xuqin@yzu.edu.cn;xyhu@yzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21675140,21575124)资助

Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites

Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*   

  1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
  • Received:2018-01-22 Revised:2018-06-16 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21675140, 21575124).
分子印迹技术是将分子设计、大分子合成、分子识别、生物模拟以及生物工程等技术的优点结合起来发展而成的一种新兴跨学科方法,所形成的分子印迹聚合物亲合性好、选择性和稳定性高。二氧化钛及其复合材料价格低廉、安全高效、绿色环保、光催化活性高,被广泛应用于光催化、光电转换等领域。二氧化钛及其复合材料形成的分子印迹聚合物稳定性高,光催化活性好,并且具有良好的选择性,能对低浓度、高毒性污染物进行选择性富集及光催化降解,拓宽了其应用范围。本文综述了近二十年来分子印迹型二氧化钛及其复合材料的制备方法及其在光催化降解、传感器构建以及其他领域的应用概况,并进行展望。
Molecular imprinting technology (MIT) is an interdisciplinary approach which has been recently developed based on the advantages of macromolecular synthesis, molecular design, molecular recognition and biological simulation and bioengineering. The molecularly imprinted polymers (MIPs) obtained by MIT process have good affinity, high selectivity and excellent stability. TiO2 and its nanocomposites have been widely used in photocatalysis, photoelectric conversion and other fields due to their stable chemical properties and low chemical toxicity. MIPs based on TiO2 and its nanocomposites exhibit enhanced stability and photocatalytic activity, good selectivity, high accumulation and degradation properties towards low concentrations of pollutants. Furthermore, the application of TiO2 and its composite as the imprinting support could reduce the nonspecific adsorption, increase the relative adsorption capacity and accelerate the mass transfer rate. They have obtained a strong position in material science and technology and showed broad applications. This article provides a short review of the developments of MIPs based on TiO2 and its nanocomposites in recent two decades. Special attention is paid to their synthesis processes including different surface imprinting, sol-gel polymerization and liquid deposition process. Their applications in photocatalytic degradation and sensor construction areas have also been summarized. The prospects for their future development are also proposed.
Contents
1 Introduction
2 Synthesis of molecularly imprinted polymers based on titanium dioxide and its nanocomposites
2.1 Surface molecular imprinting techniques
2.2 Sol-gel polymerization
2.3 Liquid deposition method
3 Application of molecularly imprinted polymers based on titanium dioxide and its nanocomposites
3.1 Photocatalytic degradation
3.2 Sensors
3.3 Other fields
4 Conclusion and outlook

中图分类号: 

()
[1] Cheong W J, Yang S H, Ali F. J. Sep. Sci., 2013, 36:609.
[2] Xiao D L,Jiang Y, Bi Y P,Microchim. Acta, 2018, 185:247.
[3] Yang S, Wang Y H, Jiang Y D, Li S, Liu W. Polymers, 2016, 8:216.
[4] Mosbach K, Ramström O. Biotechnology, 1996, 14:163.
[5] Beyazit S, Bui B T S, Karsten H, Gonzato C. Prog. Polym. Sci., 2016, 62:1
[6] Chen L X, Wang X, Lu W, Wu X, Li J. Chem. Soc. Rev., 2016, 45:2137.
[7] Chen L X, Xu S, Li J. Chem. Soc. Rev., 2011, 40:2922.
[8] Wang H, Xu Q, Wang J, Du W, Liu F, Hu X. Biosens. Bioelectron., 2017, 100:105.
[9] Li J, Xu Z, Liu M, Deng P, Tang S, Jiang J, Feng H, Qian D, He L. Biosens. Bioelectron., 2016, 90:210.
[10] Yang Y Q, Wang Z Z, Niu H, Zhang, H Q. Biosens. Bioelectron., 2016, 86:580.
[11] Pluhar B, Ziener U, Mizaikoff B. J. Mater. Chem. B, 2015, 3:6248.
[12] Shen X T, Zhu L H, Liu G X, Yu H W, Tang H Q. Environ. Sci. Technol., 2008, 42:1687.
[13] Mirzajani R, Bagheban M. Int. J. Environ. Anal. Chem., 2016, 42:1.
[14] Qiu X Z, Xu X Y, Liang Y, Guo H S. Food Chem., 2018, 258:295.
[15] Gao R X, Kong X, Wang X, He X W, Chen L X, Zhang Y K. J. Mater. Chem., 2011, 21:17863.
[16] Lahcen A A, Baleg A A, Baker P, Lwuoha E, Amine A. Sens. Actuators, B, 2017, 241:698.
[17] Ning F J, Peng H H, Dong L L, Zhang Z, Li J H, Chen L X, Xiong H. J. Agric. Food. Chem., 2014, 62:11138.
[18] Yáñez-Sedeño P, Campuzano S, Pingarrón J M. Anal. Chim. Acta, 2017, 960:1.
[19] Li J, Dong R, Wang X, Xiong H, Xu S, Shen D, Song X, Chen L. RSC Adv., 2015, 5:10611.
[20] Xu S F, Lu H Z, Chen L X, Wang X C. RSC Adv., 2014, 4:45266.
[21] Shklover V, Nazeeruddin M K, Zakeeruddin S M, Barbé C, Kay A, Haibach T, Steurer W, Hermann R, Nissen H U, Grätzel M. Chem. Mater., 1997, 9:430.
[22] Wackerlig J, Schirhagl R. Anal. Chem., 2016, 88:250.
[23] Wackerlig J, Lieberzeit P A. Sens. Actuators, B, 2015, 207:144.
[24] Gui R J, Jin H, Guo H J, Wang Z H. Biosens. Bioelectron., 2018, 100:56.
[25] Dai H, Xiao D L, He H, Li H, Yuan D H, Zhang C. Microchim. Acta, 2015, 182:893.
[26] Yang Y, Che A, Wu J, Xu Z. Chemistry, 2007, 70:324.
[27] 丛姣姣(Cong J J),罗静(Luo J),高雅涵(Gao Y H),刘晓亚(Liu X Y).高分子通报(Chinese Polymer Bulletin), 2015:10.
[28] 侯会卿(Hou H Q),苏黎明(Su L M),黄嫣嫣(Huang Y Y),金钰龙(Jin Y L),赵睿(Zhao R).色谱(Chinese Journal of Chromatography), 2016, 34:1206.
[29] 明魏娜(Ming W N),王晓艳(Wang X Y),明永飞(Ming Y F),李金花(Li J H),陈令新(Chen L X). 化学进展(Progress in Chemistry), 2016, 28:552.
[30] Luo X, Li C, Duan Y, Zhang H, Zhang D, Zhang C, Sun G, Sun X. J. Appl. Polym. Sci., 2016, 43126.
[31] Shiomi T, Matsui M, Mizukami F, Sakaguchi K. Biomaterials, 2005, 26:5564.
[32] Wang Y T, Zhou Y X, Sokolov J, Rigas B, Levon K, Rafailovich M. Biosens. Bioelectron., 2008, 24:162.
[33] Liu D, Ulbricht M. RSC Adv., 2017, 7:11012.
[34] Bossi A, Piletsky S A, Piletska E V, Righetti P G, Turner A P. Anal. Chem., 2001, 73:5281.
[35] Li Y, Yang H H, You Q H, Wang X R. Anal. Chem., 2006, 78:317.
[36] 王嘉楠(Wang J N),李媛媛(Li Y Y), 倪刚(Ni G),李玲玲(Li L L). 化工新型材料(New Chemical Materials), 2015,43:49.
[37] Yao Q J, Zhou Y M, Sun Y Q, Ye X Y. Inorg. Organomet. Polym. Mater., 2009, 19:466.
[38] Li Y, Yin X F, Chen F R, Yang H H, Zhuang Z X, Wang X R. Macromolecules, 2006. 39:4497.
[39] Huang Z J, Zhang Z M, Xia Q, Li C L, Yun Y B. J. Appl. Polym. Sci., 2017, 134:1097.
[40] Du T, Cheng J, Wu M, Wang X, Zhou H, Cheng M. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 951/952:104.
[41] Moein M M, Javanbakht M, Akbari-Adergani B. J. Chromatogr. B, 2011, 879:777.
[42] Corcione C E, Striani R, Frigione M. Prog. Org. Coat., 2014, 77:1117.
[43] Lee S W, Park J W, Park C H, Lim D H, Kim H J, Song J Y, Lee J H. Int. J. Adhes. Adhes., 2013, 44:138.
[44] Shen X T, Zhu L H, Li J, Tang H Q. Chem. Commun., 2007, 11:1163.
[45] 吕运开(Lv Y K), 严秀平(Yan X P). 分析化学(Chinese Journal of Analytical Chemistry), 2005, 33:254.
[46] Ansari S, Karimi M. Talanta, 2016, 164:612.
[47] Wang Z, HelmerssonU, Käll P O. Thin Solid Films, 2009, 405:50.
[48] Takahara N, Wang T, Lee S W. Kobunshi Ronbunshu, 2013, 70:214.
[49] 张磊(Zhang L), 周文静(Zhou W J),龚雪云(Gong X Y), 缪娟(Miu J). 化学研究(Chemical Research), 2014, 25:504.
[50] Liu Y T, Liu R H, Liu C B, Luo S L, Yang L X, Sui F, Teng Y R, Yang R B, Cai Q Y. J. Hazard. Mater., 2010, 182:912.
[51] 冯莎莎(Feng S S), 梁春凤(Liang C F),梁顺超(Liang S C),魏小平(Wei X P),李建平(Li J P). 分析测试学报(Journal of Instrumental Analysis), 2017, 36:684.
[52] Cai Z F, Dai H J, Si S H, Ren F L. Appl. Surf. Sci., 2008, 254:4457.
[53] 周婉媛(Zhou W Y), 尹佳音(Yi J Y),伊玉(Yi Y),姬广凯(Ji G K),李晔(Li Y),许士洪(Xu S H). 武汉理工大学学报(Journal of Wuhan University of Technology), 2014, 2:111.
[54] 黄利强(Huang L Q), 林鹏(Lin P). 厦门大学学报(自然版)(Journal of Xiamen University(Natural Science)), 2012, 51:224.
[55] Maki H, Okumura Y, Ikuta H, Mizuhata M. J. Phys. Chem. C, 2014, 118:11964.
[56] Shen X T, Zhu L H, Yu H W, Tang H Q, Liu S S, Li W Y. New J. Chem., 2009, 33:1673.
[57] 余琼卫(Yu Q W), 冯钰锜(Feng Y Q). 化学进展(Progress in Chemistry), 2011, 23:1211.
[58] Wang C H, Li C Y, Wang F, Wang C F. Appl. Surf. Sci., 2006, 253:2282.
[59] Wang C H, Li C Y, Wei L F, Wang C F. Microchim. Acta, 2007, 158:307.
[60] Wang H T, Wu X, Zhao H M, Quan X. Chin. Sci. Bull., 2012, 57:601.
[61] Feng L A, Liu Y J, Hu J M. Langmuir, 2004, 20:1786.
[62] Tatemichi M, Sakamoto M A, Mizuhata M, Deki S, Takeuchi T. J. Am. Chem. Soc., 2007, 129:10906.
[63] Fujishima A, Honda K. Nature, 1972, 238:37.
[64] Zhang J, Xiao X, Nan J. J. Hazard. Mater., 2010, 176:617.
[65] Lee C K, Fen S K, Chao H P, Liu S S, Huang F C. Adsorption, 2012, 18:349.
[66] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem. Rev., 1995, 95:69.
[67] Lin Z K, He Q Y, Wang L T, Wang X D, Dong Q X, Huang C J. J. Hazard. Mater., 2013, s 252/253:57.
[68] Zhang W L, Li Y, Wang Q, Wang C, Wang P F, Mao K. Environ. Sci. Pollut. Res. Int., 2013, 20:1431.
[69] He M Q, Bao L L, Sun K Y, Zhao D X, Li W B, Xia J X, Li H M. Express Polym. Lett., 2014, 8:850.
[70] Liu Y, Zhu J L, Liu X, Li H X. RSC Adv., 2016, 6:69326.
[71] Liu C, Chang V W, Gin K Y. Environ. Toxicol. Chem., 2013, 32:2226.
[72] Jian J M, Guo Y, Zeng L X, Liu L Y, Lu X W, Wang F, Zeng E Y. Environ. Int., 2017,108:51.
[73] Wu Y B, Li Y, Tian A J, Mao K, Liu J. Int. J. Photoenergy, 2016, 133:1.
[74] Li S, Fang L, Ye M M, Zhang Y. Desalin. Water Treat., 2016, 57:408.
[75] BialkBielińska A, Stolte S, Arning J, Uebers U, Böschen A, Stepnowski P, Matzke M. Chemosphere, 2011, 85:928.
[76] García-Galán M J, González B S, López R R, Díaz-Cruz S, Barceló D E. Sci. Total Environ., 2012, 437:403.
[77] 王云(Wang Y),陈芳艳(Chen F Y),丁旻炜(Ding M W),高承娟(Gao C J),李启祥(Li Q X),顾昊晨(Gu H C). 环境科技(Environmental Science and Technology), 2016, 29:6.
[78] Wu Y Y, Dong Y M, Xia X F, Liu X, Li H X. Appl. Surf. Sci., 2016, 364:829.
[79] Deng F, Lu X Y, Pei X L, Luo X B A, Luo S L, Dionysiou D D, Au C. Sci. Adv. Mater., 2016, 8:1737.
[80] Shen X T, Zhu L H, Huang C X, Tang H Q, Yu Z W, Deng F. J. Mater. Chem., 2009, 19:4843.
[81] Sharabi D, Paz Y. Appl. Catal. B-Environ., 2010, 95:169.
[82] Danielle W K,Gabriel L, Mika E M, David E C. Anal. Chem., 2012, 84:685.
[83] Zhu C, Yang G, Li H, Du D, Lin Y. Anal. Chem., 2015, 87:230.
[84] Malitesta C, Mazzotta E, Picca R A, Poma A, Chianella I, Piletsky S A. Anal. Bioanal.Chem., 2012, 402:1827.
[85] Bagheri H, Pajooheshpour N, Afkhami A, Khoshsafar H. RSC Adv., 2016, 6:51135.
[86] 李春涯(Li C Y),王长发(Wang C F),王成行(Wang C X),胡胜水(Hu S S). 全国电分析化学学术会议(Chinese National Symposium on Electroanalytical Chemistry). 2005.
[87] Wang P P, Ge L, Li M, Li W P, Li L, Wang Y H, Yu J H. J. Inorg. Organomet. Polym. Mater., 2013, 23:703.
[88] 孙兵(Sun B),艾仕云(Ai S Y). 化学进展(Progress in Chemistry), 2014, 26:834.
[89] Gomi M, Osaki Y, Mori M, Sakagami Y. Biocontrol Sci., 2012, 17:175.
[90] 赵伟伟(Zhao W W),马征远(Ma Y Z),徐静娟(Xu J J),陈洪渊(Chen H Y). 科学通报(Chinese Science Bulletin), 2014, 2:122.
[91] 张兆霞(Zhang Z X), 赵常志(Zhao C Z). 分析化学(Chinese Journal of Analytical Chemistry), 2013, 41:436.
[92] Wang G, Xu J, Chen H. Sci. China, Ser. B Chem., 2009, 52:1789.
[93] Wang G L, Jiao H J, Liu K L, Wu X M, Dong Y M, Li Z J, Zhang C. Electrochem. Commun., 2014, 41:47.
[94] Ma W, Han D, Gan S, Zhang N, Liu S, Wu T, Zhang Q, Dong X, Niu L. Chem. Commun., 2013, 49:7842.
[95] Wang P, Dai W, Ge L, Yan M, Ge S, Yu J. Analyst, 2013, 138:939.
[96] 刘桂明(Liu G M), 邓义敏(Deng Y M),李怡(Li Y).环境科学导刊(Environmental Science Survey), 2002, 21:7.
[97] Liu M C, Ding X, Yang Q W, Wang Y, Zhao G H, Yang N J. J. Hazard. Mater., 2017, 331:309.
[98] Geng H R, Miao S S, Jin S F, Yang H. Anal. Bioanal.Chem., 2015, 407:8803.97.
[99] Khoddami N, Shemirani F. Talanta, 2016, 146:244.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[10] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[13] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[14] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[15] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.