English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1228-1241 DOI: 10.7536/PC180201 前一篇   后一篇

• 综述 •

多巴胺基纳米材料在生物医药中的应用

李红1,2, 赵媛媛1, 彭浩南3*   

  1. 1. 西安石油大学化学化工学院 陕西省油气田环境污染控制技术与储层保护重点实验室 西安 710065;
    2. 石油石化污染物控制与处理国家重点实验室 中国石油集团安全环保技术研究院 北京 102206;
    3. 陕西师范大学化学化工学院 应用表面与胶体化学教育部重点实验室 西安 710119
  • 收稿日期:2018-02-01 修回日期:2018-04-13 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 彭浩南 E-mail:phn@snnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21703169,21603138)、陕西省自然科学基础研究计划(No.2017JQ2024)和陕西省教育厅专项科研计划项目(No.17JK0600)资助

Dopamine Based Nanomaterials for Biomedical Applications

Hong Li1,2, Yuanyuan Zhao1, Haonan Peng3*   

  1. 1. College of Chemistry and Chemical Engineering, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China;
    2. State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China;
    3. Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
  • Received:2018-02-01 Revised:2018-04-13 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21703169, 21603138), the Scientific Research Plan of Shaanxi Province of China(No. 2017JQ2024), and the Scientific Research Program Funded by Shaanxi Provincial Education Department(No. 17JK0600).
多巴胺是存在于人体内的一种儿茶酚胺类神经递质。自从研究者们发现了利用多巴胺的氧化自聚合反应制备聚多巴胺涂层的简便方法之后,多巴胺基纳米材料已经发展成为一类新兴的生物材料。多巴胺基纳米材料由于具有独特的物理化学性质,例如普适性的粘附性质、高化学反应活性、优良的生物相容性和生物降解性、以及光热转换性质,而在生物传感、药物输送、光热疗法、抗菌和组织工程等领域吸引了研究者们强烈的研究兴趣。本文综述了多巴胺基纳米材料的制备、功能化及在生物医药应用方面的最新进展。首先介绍了几种典型的多巴胺基纳米材料,并讨论影响其组装过程的因素。之后详细综述了这些材料在生物医药领域的应用,尤其是在癌症诊断和治疗方面。最后,本文提出了推进多巴胺基纳米材料临床应用需要发展的研究方向。
Dopamine is a catecholamine that acts as an important neurotransmitter in the nervous system. Since the introduction of the simple preparation method of polydopamine with the oxidative self-polymerization of dopamine, dopamine based nanomaterials have emerged as the novel biomaterials. They have attracted considerable interests in the fields of biosensing, drug delivery, photothermal therapy, antimicrobials, and tissue engineering due to their unique physicochemical properties, such as versatile adhesion property, high chemical reactivity, excellent biocompatibility and biodegradability, and strong photothermal conversion capacity. This review summarizes the recent advances on the fabrication, functionalization, and biomedical applications of dopamine based nanomaterials. Firstly, several typical dopamine based nanomaterials are introduced with a discussion of the factors that influence the assembly process. Then detailed elaboration is followed on their applications in biomedical fields, especially in cancer diagnosis and therapy. Finally, the review proposes some research topics for clinical applications of dopamine based nanomaterials.
Contents
1 Introduction
2 Dopamine based nanomaterials
2.1 Nanoparticles
2.2 Microcapsules
2.3 Polydopamine films
2.4 Other materials
3 Biomedical applications
3.1 Biosensing
3.2 Bioimaging
3.3 Drug delivery
3.4 Photothermal therapy
3.5 Theranostics
3.6 Antimicrobials
3.7 Tissue engineering
4 Conclusion and perspective

中图分类号: 

()
[1] Bibb J A, Snyder G L, Nishi A, Yan Z, Meijer L, Fienberg A A, Tsai L H, Kwon Y T, Girault J A, Czernik A J, Huganir R L, Hemmings H C, Nairn A C, Greengard P. Nature, 1999, 402(6762):669.
[2] Carlsson A, Lindqvist M. Acta Physiol. Scand., 1962, 54:87.
[3] Huang H L, Wu K M, Ma J, Du Y L, Cao C Y, Nie Y Q. Int. Immunopharmacol., 2016, 39:113.
[4] Zhang Q B, Zhang B H, Zhang K Z, Meng X T, Jia Q A, Bu Y, Zhu X D, Ma D N, Ye B G, Zhang N, Ren Z G, Sun H C, Tang Z Y. Oncogene, 2016, 35(31):4122.
[5] Akbari M E, Kashani F L, Ahangari G, Pornour M, Hejazi H, Nooshinfar E, Kabiri M, Hosseini L. Breast Cancer, 2016, 23(6):901.
[6] Borcherding D C, Tong W, Hugo E R, Barnard D F, Fox S, LaSance K, Shaughnessy E, Ben-Jonathan N. Oncogene, 2016, 35(24):3103.
[7] Basu S, Nagy J A, Pal S, Vasile E, Eckelhoefer I A, Bliss V S, Manseau E J, Dasgupta P S, Dvorak H F, Mukhopadhyay D. Nat. Med., 2001, 7(5):569.
[8] Moreno-Smith M, Lu C, Shahzad M M K, Pena G N A, Allen J K, Stone R L, Mangala L S, Han H D, Kim H S, Farley D, Berestein G L, Cole S W, Lutgendorf S K, Sood A K. Clin. Cancer Res., 2011, 17(11):3649.
[9] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849):426.
[10] Lynge M E, van der Westen R, Postma A, Stadler B. Nanoscale, 2011, 3(12):4916.
[11] Liu Y L, Ai K L, Lu L H. Chem. Rev., 2014, 114(9):5057.
[12] 赵晨旭(Zhao C X), 谢银红(Xie Y H), 廖芝建(Liao Z J), 秦振立(Qin Z L), 杜思南(Du S N), 左芳(Zuo F), 赵志刚(Zhao Z G). 高分子通报(Chinese Polymer Bulletin), 2015, 12(004):28.
[13] 廉成波(Lian C B), 郑爱隔(Zheng A G), 史新妍(Shi X Y). 合成橡胶工业(China Synthetic Rubber Industry), 2014, 37(4):327.
[14] Liu M Y, Zeng G J, Wang K, Wan Q, Tao L, Zhang X Y, Wei Y. Nanoscale, 2016, 8(38):16819.
[15] Batul R, Tamanna T, Khaliq A, Yu A. Biomater. Sci., 2017, 5(7):1204.
[16] Perikamana S K M, Lee J, Lee Y B, Shin Y M, Lee E J, Mikos A G, Shin H. Biomacromolecules, 2015, 16(9):2541.
[17] 刘宗光(Liu Z G), 屈树新(Qu S X), 翁杰(Weng J). 化学进展(Progress in Chemistry), 2015, 27(2/3):212.
[18] Liu Y L, Ai K L, Liu J H, Deng M, He Y Y, Lu L H. Adv. Mater., 2013, 25(9):1353.
[19] Xie Y, Lin X Y, Huang Y S, Pan R J, Zhu Z, Zhou L J, Yang C Y J. Chem. Commun., 2015, 51(11):2156.
[20] Wang Q, Yin B C, Ye B C. Biosens. Bioelectron., 2016, 80:366.
[21] Liu F Y, He X X, Zhang J P, Chen H D, Zhang H M, Wang Z X. J. Mater. Chem. B, 2015, 3(33):6731.
[22] Zheng Q S, Lin T R, Wu H Y, Guo L Q, Ye P R, Hao Y L, Guo Q Q, Jiang J Z, Fu F F, Chen G N. Int. J. Pharm., 2014, 463(1):22.
[23] Xiong W, Peng L X, Chen H B, Li Q. Int. J. Nanomed., 2015, 10:2985.
[24] Ju K Y, Lee S, Pyo J, Choo J, Lee J K. Small, 2015, 11(1):84.
[25] Wang S W, Zhao X Y, Wang S C, Qian J, He S L. ACS Appl. Mater. Interfaces, 2016, 8(37):24368.
[26] Lin Q K, Huang X J, Tang J M, Han Y M, Chen H. J. Nanopart. Res., 2013, 15(12):2144.
[27] Si J Y, Yang H. Mater. Chem. Phys., 2011, 128(3):519.
[28] Liu R, Guo Y L, Odusote G, Qu F L, Priestley R D. ACS Appl. Mater. Interfaces, 2013, 5(18):9167.
[29] Wu M, Zhang D, Zeng Y Y, Wu L J, Liu X L, Liu J F. Nanotechnology, 2015, 26(11):115102.
[30] Wu M, Wang Q T, Zhang D, Liao N S, Wu L J, Huang A M, Liu X L. Colloids Surf. B, 2016, 141:467.
[31] Xuan M J, Zhao J, Shao J X, Du C L, Cui W, Duan L, Qi W, Li J B. J. Colloid Interf. Sci., 2017, 487:107.
[32] Jia Y, Li J B. Chem. Rev., 2015, 115(3):1597.
[33] Feng X Y, Du C L, Li J B. Chem. Rec., 2016, 16(4):1991.
[34] Postma A, Yan Y, Wang Y J, Zelikin A N, Tjipto E, Caruso F. Chem. Mater., 2009, 21(14):3042.
[35] Chen X, Yan Y, Muellner M, van Koeverden M P, Noi K F, Zhu W, Caruso F. Langmuir, 2014, 30(10):2921.
[36] Liu Q, Yu B, Ye W C, Zhou F. Macromol. Biosci., 2011, 11(9):1227.
[37] Li H, Jia Y, Feng X Y, Li J B. J. Colloid Interf. Sci., 2017, 487:12.
[38] Zhang L, Shi J F, Jiang Z Y, Jiang Y J, Qiao S Z, Li J, Wang R, Meng R J, Zhu Y Y, Zheng Y. Green Chem., 2011, 13(2):300.
[39] Cui J W, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Biomacromolecules, 2012, 13(8):2225.
[40] Yeroslavsky G, Richman M, Dawidowicz L O, Rahimipour S. Chem. Commun., 2013, 49(51):5721.
[41] Ni Y Z, Jiang W F, Tong G S, Chen J X, Wang J, Li H M, Yu C Y, Huang X H, Zhou Y F. Org. Biomol. Chem., 2015, 13(3):686.
[42] Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y. Langmuir, 2011, 27(23):14180.
[43] Tsai W B, Chen W T, Chien H W, Kuo W H, Wang M J. J. Biomater. Appl., 2014, 28(6):837.
[44] Shin Y M, Lee Y B, Kim S J, Kang J K, Park J C, Jang W, Shin H. Biomacromolecules, 2012, 13(7):2020.
[45] Wang X B, Miao J J, Xia Q, Yang K, Huang X H, Zhao W B, Shen J. Electrochim. Acta, 2013, 112:473.
[46] Zhang P, He M, Zeng Y. Lab on a Chip, 2016, 16(16):3033.
[47] Wu S J, Cai C C, Cheng J, Cheng M, Zhou H B, Deng J L. Anal. Chim. Acta, 2016, 935:113.
[48] Kohri M, Nannichi Y, Kohma H, Abe D, Kojima T, Taniguchi T, Kishikawa K. Colloids Surf. A, 2014, 449:114.
[49] Yu X, Fan H L, Wang L, Jin Z X. Angew. Chem. Int. Ed., 2014, 53(46):12600.
[50] Fan H L, Yu X, Liu Y, Shi Z J, Liu H H, Nie Z X, Wu D C, Jin Z X. Soft Matter, 2015, 11(23):4621.
[51] Ma S, Qi Y X, Jiang X Q, Chen J Q, Zhou Q Y, Shi G, Zhang M. Anal. Chem., 2016, 88(23):11647.
[52] Hong S, Schaber C F, Dening K, Appel E, Gorb S N, Lee H. Adv. Mater., 2014, 26(45):7581.
[53] Zhang Y, Thingholm B, Goldie K N, Ogaki R, Stadler B. Langmuir, 2012, 28(51):17585.
[54] Li H, Jia Y, Wang A H, Cui W, Ma H C, Feng X Y, Li J B. Chem. Eur. J., 2014, 20(2):499.
[55] Liu J Y, Wang J, Wang T S, Li D, Xi F N, Wang J, Wang E K. Biosens. Bioelectron., 2015, 65:281.
[56] Egeblad M, Werb Z. Nat. Rev. Cancer, 2002, 2(3):161.
[57] Zhu L, Kate P, Torchilin V P. ACS Nano, 2012, 6(4):3491.
[58] Yang G H, Li L L, Rana R K, Zhu J J. Carbon, 2013, 61:357.
[59] Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang Y L, Wang Q. Nano Lett., 2006, 6(8):1632.
[60] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H. Adv. Funct. Mater., 2010, 20(3):453.
[61] Qiang W B, Li W, Li X B, Chen X, Xu D K. Chem. Sci., 2014, 5(8):3018.
[62] Liu Q, Pu Z H, Asiri A M, Al-Youbi A O, Sun X P. Sensor. Actuat. B Chem., 2014, 191:567.
[63] Wang D, Chen C, Ke X B, Kang N, Shen Y Q, Liu Y L, Zhou X, Wang H J, Chen C Q, Ren L. ACS Appl. Mater. Interfaces, 2015, 7(5):3030.
[64] Chandra S, Das P, Bag S, Laha D, Pramanik P. Nanoscale, 2011, 3(4):1533.
[65] Yan L L, Zhang Y, Xu B, Tian W J. Nanoscale, 2016, 8(5):2471.
[66] Zhang X Y, Wang S Q, Xu L X, Feng L, Ji Y, Tao L, Li S X, Wei Y. Nanoscale, 2012, 4(18):5581.
[67] Kircher M F, de la Zerda A, Jokerst J V, Zavaleta C L, Kempen P J, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan C W, Mellinghoff I K, Holland E C, Gambhir S S. Nat. Med., 2012, 18(5):829.
[68] Ju K Y, Lee J W, Im G H, Lee S, Pyo J, Park S B, Lee J H, Lee J K. Biomacromolecules, 2013, 14(10):3491.
[69] Huang Z W, Lui H, Chen X K, Alajlan A, McLean D I, Zeng H S. J. Biomed. Opt., 2004, 9(6):1198.
[70] Popat A, Ross B P, Liu J, Jambhrunkar S, Kleitz F, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(50):12486.
[71] Ho C C, Ding S J. J. Mater. Sci. Mater. Med., 2013, 24(10):2381.
[72] Zhan H L, Jagtiani T, Liang J F. Eur. J. Pharm. Biopharm., 2017, 114:221.
[73] Zong W, Hu Y, Su Y C, Luo N, Zhang X N, Li Q C, Han X J. J. Microencapsul., 2016, 33(3):257.
[74] Xu G J, Yu X H, Zhang J X, Sheng Y C, Liu G, Tao W, Mei L. Int. J. Nanomed., 2016, 11:2953.
[75] Tao W, Zeng X W, Wu J, Zhu X, Yu X H, Zhang Y, Zhang J X, Liu G, Mei L. Theranostics, 2016, 6(4):470.
[76] Hashemi-Moghaddam H, Kazemi-Bagsangani S, Jamili M, Zavareh S. Int. J. Pharmaceut., 2016, 497(1/2):228.
[77] Zavareh S, Mahdi M, Erfanian S, Hashemi-Moghaddam H. Cancer Chemoth. Pharm., 2016, 78(5):1073.
[78] Xue J H, Zheng W C, Wang L, Jin Z X. ACS Biomater. Sci. Eng., 2016, 2(4):489.
[79] Tang W T, Liu B, Wang S P, Liu T L, Fu C H, Ren X L, Tan L F, Duan W B, Meng X W. RSC Adv., 2016, 6(39):32434.
[80] Dai Y L, Xu C, Sun X L, Chen X Y. Chem. Soc. Rev., 2017, 46(12):3830.
[81] Ghavami-Nejad A, Sasikala A R K, Unnithan A R, Thomas R G, Jeong Y Y, Vatankhah-Varnoosfaderani M, Stadler F J, Park C H, Kim C S. Adv. Funct. Mater., 2015, 25(19):2867.
[82] Sasikala A R K, GhavamiNejad A, Unnithan A R, Thomas R G, Moon M, Jeong Y Y, Park C H, Kim C S. Nanoscale, 2015, 7(43):18119.
[83] Chaturvedi K, Ganguly K, Nadagouda M N, Aminabhavi T M. J. Control. Release, 2013, 165(2):129.
[84] Wang D D, Wu H H, Zhou J J, Xu P P, Wang C L, Shi R H, Wang H B, Wang H, Guo Z, Chen Q W. Adv. Sci., 2018, 5:1800287.
[85] Ding W, Chechetka S A, Masuda M, Shimizu T, Aoyagi M, Minamikawa H, Miyako E. Chem. Eur J., 2016, 22(13):4345.
[86] Yu J, Lin Y H, Yang L, Huang C C, Chen L, Wang W C, Chen G W, Yan J, Sawettanun S, Lin C H. Adv. Healthcare Mater., 2017, 6(2):1600804.
[87] Zheng R, Wang S, Tian Y, Jiang X G, Fu D L, Shen S, Yang W L. ACS Appl. Mater. Interfaces, 2015, 7(29):15876.
[88] Ding Y, Su S, Zhang R, Shao L, Zhang Y, Wang B, Li Y, Chen L, Yu Q, Wu Y, Nie G. Biomaterials, 2017, 113:243.
[89] Zhang R R, Su S S, Hu K L, Shao L H, Deng X W, Sheng W, Wu Y. Nanoscale, 2015, 7(46):19722.
[90] Wu X J, Zhou L Z, Su Y, Dong C M. Polym. Chem., 2016, 7(35):5552.
[91] GhavamiNejad A, SamariKhalaj M, Aguilar L E, Park C H, Kim C S. Sci. Rep., 2016, 6:33594.
[92] Kim S H, Sharker S M, Lee H, In I, Lee K D, Park S Y. RSC Adv., 2016, 6(66):61482.
[93] Li Y, Zhang X Y, Zheng M, Liu S, Xie Z G. RSC Adv., 2016, 6(59):54087.
[94] Li D, Zhang Y X, Wen S H, Song Y, Tang Y Q, Zhu X Y, Shen M W, Mignani S, Majoral J, Zhao Q H, Shi X Y. J. Mater. Chem. B, 2016, 4(23):4216.
[95] Liu B, Li C X, Xing B G, Yang P P, Lin J. J. Mater. Chem. B, 2016, 4(28):4884.
[96] Zhao H, Chao Y, Liu J J, Huang J, Pan J, Guo W L, Wu J Z, Sheng M, Yang K, Wang J, Liu Z. Theranostics, 2016, 6(11):1833.
[97] Cho S, Park W, Kim D H. ACS Appl. Mater. Interfaces, 2017, 9(1):101.
[98] Chen Y, Ai K L, Liu J H, Ren X Y, Jiang C H, Lu L H. Biomaterials, 2016, 77:198.
[99] Dong Z L, Gong H, Gao M, Zhu W W, Sun X Q, Feng L Z, Fu T T, Li Y G, Liu Z. Theranostics, 2016, 6(7):1031.
[100] Lin L S, Cong Z X, Cao J B, Ke K M, Peng Q L, Gao J, Yang H H, Liu G, Chen X. ACS Nano, 2014, 8(4):3876.
[101] Li Y Y, Jiang C H, Zhang D W, Wang Y, Ren X Y, Ai K L, Chen X S, Lu L H. Acta Biomater., 2017, 47:124.
[102] Zhang M, Peltier R, Zhang M M, Lu H J, Bian H D, Li Y Y, Xu Z T, Shen Y J, Sun H Y, Wang Z K. J. Mater. Chem. B, 2017, 5(27):5311.
[103] Li H, Yan Y L, Gu X F, Jiao L, Peng H N, Cui W. Colloids Surf. A, 2018, 538:513.
[104] Jiang J H, Zhu L P, Zhu L J, Zhang H T, Zhu B K, Xu Y Y. ACS Appl. Mater. Interfaces, 2013, 5(24):12895.
[105] Su L, Yu Y, Zhao Y S, Liang F, Zhang X J. Sci. Rep., 2016, 6:24420.
[106] Iqbal Z, Lai E P C, Avis T J. J. Mater. Chem., 2012, 22(40):21608.
[107] Yang K, Lee J S, Kim J, Lee Y B, Shin H, Um S H, Kim J B, Park K I, Lee H, Cho S W. Biomaterials, 2012, 33(29):6952.
[108] Lee S J, Lee D, Yoon T R, Kim H K, Jo H H, Park J S, Lee J H, Kim W D, Kwon I K, Park S A. Acta Biomater., 2016, 40:182.
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[11] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[14] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[15] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.