English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1097-1111 DOI: 10.7536/PC180129 前一篇   后一篇

• 综述 •

“活性”/可控自由基聚合制备两性离子聚合物及其应用

李智1, 唐后亮2, 冯岸超1*, 汤华燊1*   

  1. 1. 北京化工大学北京市软物质科学与工程高精尖创新研究中心 材料科学与工程学院 北京 100029;
    2. 南卫理工会大学化学学院 美国达拉斯 75275
  • 收稿日期:2018-01-29 修回日期:2018-02-23 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 冯岸超, 汤华燊 E-mail:fengac@mail.buct.edu.cn;thangsh@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21704001)、中央高校基本科研业务费专项资金(No.BUCTRC201724)和北京软物质科学与工程高精尖创新中心经费资助

Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications

Zhi Li1, Houliang Tang2, Anchao Feng1*, San H. Thang1*   

  1. 1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Department of Chemistry, Southern Methodist University, Dallas TX 75275, USA
  • Received:2018-01-29 Revised:2018-02-23 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21704001), the Fundamental Research Funds for the Central Universities(No.BUCTRC201724), and the Beijing Advanced Innovation Center for Soft Matter Science and Engineering.
两性离子聚合物是在高分子链段上包含丰富等量阴离子基团与阳离子基团的聚合物,因具备优异的亲水性、生物相容性等独特的性质,近年来在抗污染、生物医药等领域展示了极广阔的应用前景。按照其结构特征,可以大体被分为混合电荷型与甜菜碱型两性离子聚合物。目前两性离子聚合物的制备方法多种多样,从实际应用的角度出发,使用“活性”/可控自由基聚合制备两性离子聚合物具有独特的优势,如分子量可控、易于制备复杂结构聚合物等,这些特性拓宽了两性离子聚合物的应用领域。本文沿“单体直接聚合”和“聚合物后修饰”两条路径,介绍了使用“活性”/可控自由基聚合制备两性离子聚合物的优势及进展,同时从抗污染材料、生物医药材料、物质检测与分离等方面概述了两性离子聚合物的主要应用,并对其未来发展作出展望。
Zwitterionic polymer is a polymer with equivalent positive and negative charge groups on the polymer chains. It is widely used in the areas of anti-fouling and biomedical applications due to its super-hydrophilic and biocompatible properties. Based on their structural features, they can be broadly divided into mixed-charge type and betaine type zwitterionic polymers. At present, zwitterionic polymers can be prepared in a variety of methods, among which living/controlled radical polymerization is a robust and versatile method for the preparation of zwitterionic materials. This approach allows preparation of polymers with precise control over molecular weight, molecular weight distribution, polymer composition, topology and functionality. In this paper, the synthesis of zwitterionic polymers and its recent development are critically reviewed. We mainly focus on the advantages and development of living/controlled radical polymerization for preparing zwitterionic polymers. The main applications of zwitterionic polymers as anti-fouling materials, biomedical materials, detection and separation are summarized and the prospect of their future development is also outlined.
Contents
1 Introduction
2 Synthesis of zwitterionic polymers by living/controlled radical polymerization.
2.1 Preparation of mixed-charge type polymers
2.2 Preparation of betaine type polymers
3 Applications of zwitterionic polymers
3.1 Industrial materials
3.2 Biomedical materials
4 Conclusion and outlook

中图分类号: 

()
[1] Lowe A B, McCormick C L. Chem. Rev., 2002, 102(11):4177.
[2] 王中华(Wang Z H). 中外能源(Sino-global Energy), 2013, 18(10):34.
[3] Beltrán-Osuna Á A, Cao B, Cheng G, Jana S C, Espe M P, Lama B. Langmuir, 2012, 28(25):9700.
[4] 陈杨军(Chen Y J), 刘湘圣(Liu X S), 王海波(Wang H B), 王寅(Wang Y), 金桥(Jin Q), 计剑(Ji J). 化学进展(Prog. Chem.), 2014, 26(11):1849.
[5] Ni L, Meng J Q, Geise G M, Zhang Y F, Zhou J. J. Membrane Sci., 2015, 491:73.
[6] Stach H. Angew. Chem. Int. Ed., 1951, 63:263.
[7] Chen S F, Jiang S Y. Adv. Mater., 2008, 20(2):335.
[8] Huang Y, Tang Z, Zhang X, Yu H, Sun H, Pang X, Chen X. Biomacromolecules, 2013, 14(6):2023.
[9] Shao Q, Mi L, Han X, Bai T, Liu S J, Li Y T, Jiang S Y. J. Phys. Chem. B, 2014, 118(24):6956.
[10] Shao Q, Jiang S Y. J. Phys. Chem. B, 2014, 118(27):7630.
[11] Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, Yamada N L, Moriwaki T, Ikemoto Y, Takahara A. Langmuir, 2017, 33(34):8404.
[12] Zhu Y C, Batchelor R, Lowe A B, Roth P J. Macromolecules, 2016, 49(2):672.
[13] Kumar R, Fredrickson G H. J. Chem. Phys., 2009, 131(10):104901.
[14] Rajan R, Matsumura K. Macromol. Rapid Commun., 2017, 38(22):1700478.
[15] Shao Q, Jiang S. Adv. Mater., 2015, 27(1):15.
[16] Mary P, Bendejacq D D, Labeau M, Dupuis P. J. Phys. Chem. B, 2007, 111(27):7767.
[17] Georgiev G S, Kamenska E B, Vassileva E D, Kamenova I P, Georgieva V T, Iliev S B, Ivanov I A. Biomacromolecules, 2006, 7(4):1329.
[18] Laschewsky, A. Polymers, 2014, 6(5):1544.
[19] Georges M K, Veregin R P, Kazmaier P M, Hamer G K. Macromolecules, 1993, 26(11):2987.
[20] Kazmaier P M, Daimon K, Georges M K, Hamer G K, Veregin R P N. Macromolecules, 1997, 30(8):2228.
[21] Xia J H, Matyjaszewski K. Macromolecules, 1997, 30(25):7697.
[22] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P, Mayadunne R T, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31(16):5559.
[23] Chiefari J, Mayadunne R T, Moad C L, Moad G, Rizzardo E, Postma A, Skidmore M A, Thang S H. Macromolecules, 2003, 36(7):2273.
[24] Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2005, 58(6):379.
[25] Perrier S. Macromolecules, 2017, 50(19):7433.
[26] 郭晓峰(Guo X F), 潘翔宇(Pan X Y), 魏晓虎(Wei X H), 冯岸超(Feng A C), 汤华燊(Thang S H). 化学进展(Prog. Chem.), 2017, 29(10):1184.
[27] Khabibullin A, Mastan E, Matyjaszewski K, Zhu S P. Controlled Radical Polymerization at and from Solid Surfaces, NY:Springer, 2015, 29.
[28] Chen X J, Lawrence J, Parelkar S, Emrick T. Macromolecules, 2012, 46(1):119.
[29] Silies L, Didzoleit H, Hess C, Stühn B, Andrieu-Brunsen A. Chem. Mater., 2015, 27(6):1971.
[30] Ma G L, Lin W F, Yuan Z F, Wu J, Qian H F, Xu L B, Chen S F. J. Mater. Chem. B, 2017, 5(5):935.
[31] Venault A, Hsu K J, Yeh L C, Chinnathambi A, Ho H T, Chang Y. Colloid. Surface. B, 2017, 151:372.
[32] Chang Y, Shu S H, Shih Y J, Chu C W, Ruan R C, Chen W Y. Langmuir, 2010, 26(5):3522.
[33] Mi L, Bernards M T, Cheng G, Yu Q M, Jiang S Y. Biomaterials, 2010, 31(10):2919.
[34] Canning S L, Neal T J, Armes S P. Macromolecules, 2017, 50(16):6108.
[35] Cheng G, Xue H, Zhang Z, Chen S F, Jiang S Y. Angew. Chem. Int. Ed., 2008, 47(46):8831.
[36] Liu J, Zhou J. Acta Biomater., 2016, 40:23.
[37] Das S, Santra S, Mondal P, Majee A, Hajra A. Synthesis, 2016, 48(09):1269.
[38] 牛瑞霞(Niu R X), 任伟东(Ren W D), 孙双波(Sun S B), 宋华(Song H), 李征鸿(Li Z H). 化工进展(Chem. Ind. Eng. Prog.), 2013, (8):1887.
[39] Chou Y N, Wen T C, Chang Y. Acta Biomater., 2016, 40:78.
[40] Sivashanmugan K, Liu P C, Tsai K W, Chou Y N, Lin C H, Chang Y, Wen T C. Nanoscale, 2017, 9(8):2865.
[41] Yuan J, Huang X B, Li P F, Li L, Shen J. Polym. Chem., 2013, 4(19):5074.
[42] 蒋川(Jiang C), 成煦(Cheng X), 杜宗良(Du Z L). 皮革科学与工程(Leather Sci. Eng.), 2015, (02):12.
[43] Jackson M A, Werfel T A, Curvino E J, Yu F, Kavanaugh T E, Sarett S M, Dockery M D, Kilchrist K V, Jackson A N, Giorgio T D, Duvall C L. ACS Nano, 2017, 11(6):5680.
[44] He X Y, Qiang S L, Liu Z, Wang M, Yang W. RSC Adv., 2015, 5(122):101055.
[45] Jangu C, Wang J H, Wang D, Fahs G, Heflin J R, Moore R B, Colby R H, Long T E. J. Mater. Chem. C, 2015, 3(16):3891.
[46] Ezzat M, Huang C. RSC Adv., 2016, 6(66):61695.
[47] Zhao W W, Ye Q, Hu H Y, Wang X L, Zhou F. J. Mater. Chem. B, 2014, 2(33):5352.
[48] Li B, Yu B, Huck W T, Zhou F, Liu W M. Angew. Chem. Int. Ed., 2012, 51(21):5092.
[49] Li B, Yu B, Zhou F. Macromol. Rapid Commun., 2013, 34(3):246.
[50] Li B, Yu B, Huck W T, Liu W M, Zhou F. J. Am. Chem. Soc., 2013, 135(5):1708.
[51] Chmielarz P, Fantin M, Park S, Isse A A, Gennaro A, Magenau A J, Sobkowiak A, Matyjaszewski K. Prog. Polym. Sci., 2017, 69:47.
[52] Pan X C, Tasdelen M A, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Prog. Polym. Sci., 2016, 62:73.
[53] Magenau A, Strandwitz N C, Gennaro A, Matyjaszewski K. Science, 2011, 332(6025):81.
[54] Hong D W, Hung H C, Wu K, Lin X J, Sun F, Zhang P, Liu S J, Cook K E, Jiang S Y. ACS Appl. Mater. Inter., 2017, 9(11):9255.
[55] Raymo F M, Giordani S. J. Am. Chem. Soc., 2001, 123(19):4651.
[56] Cao Z Q, Bian Q, Chen Y, Liang F X, Wang G J. ACS Macro Lett., 2017, 6(10):1124.
[57] Chen J, Zhong W B, Xue M J, Wang H, Yu M L, Zhang P S, Yi P G. Polym. Chem., 2017, 8(42):6520.
[58] Jin Q, Liu G Y, Ji J. J. Polym. Sci. Pol. Chem., 2010, 48(13):2855.
[59] Mi Y F, Zhao F Y, Guo Y S, Weng X D, Ye C C, An Q F. J. Membrane Sci., 2017, 541:29.
[60] Chen S J, Mei Z K, Ren H H, Zhuo H T, Liu J H, Ge Z C. Polym. Chem., 2016, 7(37):5773.
[61] Billing M, Elter J K, Schacher F H. Polymer, 2016, 104:40.
[62] Sundaram H S, Ella-Menye J, Brault N D, Shao Q, Jiang S Y. Chem. Sci., 2014, 5(1):200.
[63] Hung H C, Jain P, Zhang P, Sun F, Sinclair A, Bai T, Li B W, Wu K, Tsao C, Liu E J, Sundaram H S, Lin X J, Farahani P, Fujihara T, Jiang S Y. Adv. Mater., 2017, 29(31):1700617.
[64] 陈杰(Chen J), 李小舟(Li X Z), 田华雨(Tian H Y), 朱筱娟(Zhu X J), 陈学思(Chen X S). 高等学校化学学报(Chem. J. Chin. Univ.), 2015, 36(11):2148.
[65] Zheng L C, Sundaram H S, Wei Z Y, Li C C, Yuan Z F. React. Funct. Polym., 2017, 118:51.
[66] Leng C, Hung H C, Sun S W, Wang D Y, Li Y T, Jiang S Y, Chen Z. ACS Appl. Mater. Inter., 2015, 7(30):16881.
[67] Chen M, Briscoe W H, Armes S P, Klein J. Science, 2009, 323(5922):1698.
[68] Wu J, Lin W F, Wang Z, Chen S F, Chang Y. Langmuir, 2012, 28(19):7436.
[69] He M R, Gao K, Zhou L J, Jiao Z W, Wu M Y, Cao J L, You X D, Cai Z Y, Su Y L, Jiang Z Y. Acta Biomater., 2016, 40:142.
[70] Shahkaramipour N, Tran T, Ramanan S, Lin H. Membranes, 2017, 7(1):13.
[71] Guo S, Jańczewski D, Zhu X, Quintana R, He T, Neoh K G. J. Colloid Interf. Sci., 2015, 452:43.
[72] Chen K, Hu F L, Gu H C, Xu H. J. Mater. Chem. B, 2017, 5(3):435.
[73] Abraham S, So A, Unsworth L D. Biomacromolecules, 2011, 12(10):3567.
[74] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849):426.
[75] Kang X M, Cai W H, Zhang S, Cui S X. Polym. Chem., 2017, 8(5):860.
[76] McCloskey B D, Park H B, Ju H, Rowe B W, Miller D J, Chun B J, Kin K, Freeman B D. Polymer, 2010, 51(15):3472.
[77] Kasemset S, Lee A, Miller D J, Freeman B D, Sharma M M.J.Membrane Sci., 2013, 425/426:208.
[78] Zhu L J, Liu F, Yu X M, Gao A L, Xue L X. J. Membrane Sci., 2015, 475:469.
[79] Ulbricht M, Matuschewski H, Oechel A, Hicke H. J. Membrane Sci., 1996, 115(1):31.
[80] Pieracci J, Wood D W, Crivello J V, Belfort G. Chem. Mater., 2000, 12(8):2123.
[81] Pieracci J, Crivello J V, Belfort G. Chem. Mater., 2002, 14(1):256.
[82] Wavhal D S, Fisher E R. J. Membrane Sci., 2002, 209(1):255.
[83] Liu Z M, Xu Z K, Wan L S, Wu J, Ulbricht M. J. Membrane Sci., 2005, 249(1/2):21.
[84] Mok S, Worsfold D J, Fouda A, Matsuura T. J. Appl. Polym. Sci., 1994, 51(1):193.
[85] Kang J S, Shim J K, Huh H, Lee Y M. Langmuir, 2001, 17(14):4352.
[86] He K, Duan H R, Chen G Y, Liu X K, Yang W S, Wang D Y. ACS Nano, 2015, 9(9):9188.
[87] Krause J E, Brault N D, Li Y T, Xue H, Zhou Y B, Jiang S Y. Macromolecules, 2011, 44(23):9213.
[88] Zhu J Y, Tian M M, Hou J W, Wang J, Lin J Y, Zhang Y T, Liu J D, van der Bruggen B. J. Mater. Chem. A, 2016, 4(5):1980.
[89] Zheng J F, Li M, Yao Y J, Zhang X, Wang L J. J. Mater. Chem. A, 2017, 5(26):13730.
[90] 徐和德(Xu H D). 离子交换与吸附(Ion. Exchange. Adsorpt.), 1995, (05):460.
[91] 徐和德(Xu H D), 李国明(Li G M), 陈文森(Chen W S).应用化学(Chin. J. Appl. Chem.), 1993, (05):22.
[92] Chandrasekara N P G N, Pashley R M. Desalination, 2015, 357:131.
[93] Chan W F, Chen H Y, Surapathi A, Taylor M G, Shao X H, Marand E, Johnson J K. ACS Nano, 2013, 7(6):5308.
[94] Liu T Y, Yuan H G, Li Q, Tang Y H, Zhang Q, Qian W Z, van der Bruggen B, Wang X L. ACS Nano, 2015, 9(7):7488.
[95] Zhang Z, Zhang M, Chen S F, Horbetta T A, Ratner B D, Jiang S Y. Biomaterials, 2008, 29(32):4285.
[96] Shih Y J, Chang Y. Langmuir, 2010, 26(22):17286.
[97] Shih Y J, Chang Y, Quemener D, Yang H S, Jhong J F, Ho F M, Higuchi A, Chang Y. Langmuir, 2014, 30(22):6489.
[98] Yu B Y, Zheng J, Chang Y, Sin M C, Chang C H, Higuchi A, Sun Y M. Langmuir, 2014, 30(25):7502.
[99] Zhang L, Xue H, Gao C L, Carr L, Wang J N, Chu B C, Jiang S Y. Biomaterials, 2010, 31(25):6582.
[100] Zhu Y H, Sundaram H S, Liu S J, Zhang L, Xu X W, Yu Q M, Xu J Q, Jiang S Y. Biomacromolecules, 2014, 15(5):1845.
[101] Yuan J J, Armes S P, Takabayashi Y, Prassides K, Leite C A P, Galembeck F, Lewis A L. Langmuir, 2006, 22(26):10989.
[102] Luongo G, Campagnolo P, Perez J E, Kosel J, Georgiou T K, Regoutz A, Payne D J, Stevens M M, Ryan M P, Porter A E, Dunlop I E. ACS Appl. Mater. Inter., 2017, 9(46):40059.
[103] Zhai S Y, Ma Y H, Chen Y Y, Li D, Cao J, Liu Y J, Cai M T, Xie X X, Chen Y W, Luo X L. Polym. Chem., 2014, 5(4):1285.
[104] Wang H B, Xu F M, Wang Y, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4(10):3012.
[105] Liu G Y, Jin Q, Liu X S, Lv L P, Chen C J, Ji J. Soft Matter, 2011, 7(2):662.
[106] Chen Y J, Li Z H, Wang H B, Wang Y, Han H J, Jin Q, Ji J. ACS Appl. Mater. Inter., 2016, 8(11):6852.
[107] Chen X J, Mcrae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20(12):2331.
[108] Wang D L, Zhao T Y, Zhu X Y, Yan D Y, Wang W W. Chem. Soc. Rev., 2015, 44(12):4023.
[109] Zheng Y C, Li S P, Weng Z L, Gao C. Chem. Soc. Rev., 2015, 44(12):4091.
[110] Li X J, Qian Y F, Liu T, Hu X L, Zhang G Y, You Y Z, Liu S Y. Biomaterials, 2011, 32(27):6595.
[111] Xu W J, Siddiqui I A, Nihal M, Pilla S, Rosenthal K, Mukhtar H, Gong S. Biomaterials, 2013, 34(21):5244.
[112] Chen G J, Jaskula Sztul R, Harrison A, Dammalapati A, Xu W J, Cheng Y Q, Chen H, Gong S Q. Biomaterials, 2016, 97:22.
[113] Torchilin V P. J. Control. Release, 2001, 73(2):137.
[114] Chen H T, Kim S, He W, Wang H F, Low P S, Park K, Cheng J X. Langmuir, 2008, 24(10):5213.
[115] Poon Z, Lee J A, Huang S, Prevost R J, Hammond P T. Nanomed-Nanotechnol., 2011, 7(2):201.
[116] Kim S W, Shi Y Z, Kim J Y, Park K, Cheng J X. Expert Opin. Drug Del., 2009, 7(1):49.
[117] Sun P, Chen D, Deng H P, Wang N, Huang P, Jin X, Zhu X Y. Bioconjugate Chem., 2017, 28(5):1470.
[118] Sugihara S, Blanazs A, Armes S P, Ryan A J, Lewis A L. J. Am. Chem. Soc., 2011, 133(39):15707.
[119] Warren N J, Armes S P. J. Am. Chem. Soc., 2014, 136(29):10174.
[120] Doncom K E B, Warren N J, Armes S P. Polym. Chem., 2015, 6(41):7264.
[121] Cho E C, Xie J W, Wurm P A, Xia Y N. Nano Lett., 2009, 9(3):1080.
[122] Zhang Z, Chen S F, Jiang S Y. Biomacromolecules, 2006, 7(12):3311.
[123] Sun F, Wu K, Hung H C, Zhang P, Che X R, Smith J, Lin X J, Li B W, Jain P, Yu Q M, Jiang S Y. Anal. Chem., 2017, 89(20):10999.
[124] Padlan E A, Davies D R, Rudikoff S, Potter M. Immunochemistry, 1976, 13(11):945.
[125] Volanakis J E, Wirtz K W. Nature, 1979, 281(5727):155.
[126] Matyjaszewski K, Tsarevsky N V. Nat. Chem., 2009, 1(4):276.
[127] Lutz J, Ouchi M, Liu D R, Sawamoto M. Science, 2013, 341(6146):1238149.
[128] Kitayama Y, Takeuchi T. Anal. Chem., 2014, 86(11):5587.
[129] Wiarachai O, Vilaivan T, Iwasaki Y, Hoven V P. Langmuir, 2016, 32(4):1184.
[130] Sun J T, Yu Z Q, Hong C Y, Pan C Y. Macromol. Rapid Comm., 2012, 33(9):811.
[131] Xu J T, Jung K, Atme A, Shanmugam S, Boyer C. J. Am. Chem. Soc., 2014, 136(14):5508.
[132] Xu J T, Fu C K, Shanmugam S, Hawker C J, Moad G, Boyer C. Angew. Chem. Int. Ed., 2017, 56(29):8376.
[133] Ng G, Yeow J, Xu J T, Boyer C. Polym. Chem., 2017, 8(18):2841.
[134] Liu Z F, Lv Y, An Z S. Angew. Chem. Int. Ed., 2017, 56(44):13852.
[135] Barner L, Quinn J F, Barner-Kowollik C, Vana P, Davis T P. Eur. Polym. J., 2003, 39(3):449.
[136] McKenzie T G, Colombo E, Fu Q, Ashokkumar M, Qiao G G. Angew. Chem. Int. Ed., 2017, 56(40):12302.
[137] Matyjaszewski K, Dong H C, Jakubowski W, Pietrasik J, Kusumo A. Langmuir, 2007, 23(8):4528.
[138] Wang Y, Fantin M, Park S, Gottlieb E, Fu L Y, Matyjaszewski K. Macromolecules, 2017, 50(20):7872.
[1] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[2] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[3] 康丁, 张洪斌, 西成胜好. 生物医用结冷胶及其改性水凝胶材料[J]. 化学进展, 2014, 26(07): 1172-1189.
[4] 何晓燕*, 周文瑞, 徐晓君, 杨武*. 两性离子聚合物的合成及应用[J]. 化学进展, 2013, 25(06): 1023-1030.
[5] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.
[6] 孟晟 周欢 钟伟 杜强国. 磷酰胆碱改性聚合物*[J]. 化学进展, 2009, 21(10): 2176-2182.
[7] 宫铭,杨珊,张世平,宫永宽. 生物医用材料表面仿细胞膜结构改性*[J]. 化学进展, 2008, 20(10): 1628-1634.