English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1112-1120 DOI: 10.7536/PC171222 前一篇   后一篇

• 综述 •

高分子类型MONOLITH材料的制备技术及其作为亲和色谱固定相用于分离生物大分子的应用

许颖1, 高婷婷1, 王启晓1, 屈阳1, 刘宏飞1, 辛渊蓉1,2*   

  1. 1. 江苏大学药学院 镇江 212013;
    2. 大阪大学工学研究科应用化学系 日本大阪 565-0871
  • 收稿日期:2017-12-13 修回日期:2018-03-26 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 辛渊蓉 E-mail:xinyuanrong@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51703086,81602656)、江苏省自然科学基金项目(No.BK20160496,BK20160546)、中国博士后科学基金面上项目(No.2017M610309)和江苏大学“青年骨干教师培养工程”项目资助

Preparation Technologies of the Polymer-Based MONOLITH Material and Its Application as Stationary Phase of Affinity Chromatography for the Separation of Biological Macromolecules

Ying Xu1, Tingting Gao1, Qixiao Wang1, Yang Qu1, Hongfei Liu1, Yuanrong Xin1,2*   

  1. 1. School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
    2. Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
  • Received:2017-12-13 Revised:2018-03-26 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51703086, 81602656), the Jiangsu Provincial Natural Science Foundation(No. BK20160496, BK20160546), the Postdoctoral Science Foundation(No. 2017M610309), and the Training Project for Young Key Teachers.
高分子类型MONOLITH材料(也称整体柱,连续床)是近些年来发展迅速的一种新型的以高分子为基质的整体型多孔材料,由于其内部独特的三维连续相互贯通的多孔结构,在诸多应用领域越来越受到研究者的关注,尤其被认为是分离过滤领域的一个历史性突破。与硅基质MONOLITH材料相比,高分子类型的MONOLITH材料具有制备工艺简单、生物相容性好、化学稳定性高和表面化学性质易调控等特点,因此作为亲和色谱的固定相在生物大分子的分离分析上具有更大的优势。本综述重点总结了高分子类型MONOLITH材料的制备方法及其最新研究进展,并论述了近5年来其作为亲和色谱固定相用于分离生物大分子的应用进展。
In recent years, a newly emerging polymer-based MONOLITH material (also known as the monolithic column, continuous bed) has been developed rapidly and it has already been utilized widely in various fields. Due to its unique three-dimensional continuous interconnected porous structure in a single piece, polymer-based MONOLITH has attracted more and more attention and it is regarded as one of the major breakthroughs in separation and filtration techniques. Compared with silica-based MONOLITH material, polymer-based MONOLITH material has the advantages of simple preparation process, good biocompatibility, high chemical stability and easy regulation of surface chemical properties. Therefore, polymer-based MONOLITH has always done a better job as a stationary phase of affinity chromatography for separating and analyzing biological macromolecules. In this review, the preparation techniques and the newest development of the polymer-based MONOLITH material are summarized. In addition, its application as stationary phase of affinity chromatography for the separation of biological macromolecules in the last 5 years is described.
Contents
1 Introduction
2 Preparation techniques of the polymer-based MONOLITH materials
2.1 Free radical polymerization
2.2 Controlled/living radical polymerization
2.3 Polymerized high internal phase emulsions
2.4 Condensation polymerization
2.5 Cryogels
2.6 Other methods
3 Application of the polymer-based MONOLITH materials in separation of biomolecules by affinity chromatography
3.1 Bioaffinity chromatography
3.2 Immunoaffinity chromatography
3.3 Dye affinity chromatography
3.4 Boronate affinity chromatography
3.5 Immobilized metal-ion affinity chromatography
3.6 Pseudo affinity chromatography
4 Conclusion

中图分类号: 

()
[1] Svec F, Frechet J M J. Anal. Chem., 1992, 64:820.
[2] Saba S A, Mousavi M P, Bühlmann P, Hillmyer M A. J. Am. Chem. Soc., 2015, 137:8896.
[3] Nischang I, Causon T J. Trends Anal. Chem., 2016, 75:108.
[4] Ahmed A, Forster M, Clowes R, Myers P, Zhang H. Chem. Commun., 2014, 50:14314.
[5] Jones B H, Lodge T P. ACS Nano, 2011, 5:8914.
[6] Ungureanu S, Birot M, Deleuze H, Schmitt V, Mano N, Backov R. Carbon, 2015, 91:311.
[7] Moitra N, Kanamori K, Shimada T, Takeda K, Ikuhara Y H, Xiang G, Nakanishi K. Adv. Funct. Mater., 2013, 23:2714.
[8] Ghanem A, Ikegami T. J. Sep. Sci., 2011, 34:1945.
[9] Siouffi A M. J. Chromatogr. A, 2003, 1000:801.
[10] Liang Y, Zhang L H, Zhang Y K. Anal. Bioanal.Chem., 2013, 405:2095.
[11] Podgornik A, Yamamoto S, Peterka M, Krajnc N L. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 927:80.
[12] Hong T T, Xi Y, Xu Y J, Ji Y B. Anal. Chim. Acta, 2016, 931:1.
[13] Levkin P A, Eeltink S, Stratton T R, Brennen R, Robotti K, Yin H, Killeen K, Svec F, Fréchet J M. J. Chromatogr. A, 2008, 1200:55.
[14] Svec F. J. Chromatogr. A, 2010, 1217:902.
[15] Namera A, Nakamoto A, Saito T, Miyazaki S. J. Sep. Sci., 2011, 34:901.
[16] Buchmeiser M R. Polymer, 2007, 48:2187.
[17] Nischang I, Teasdale I, Brüggemann O. Anal. Bioanal. Chem., 2011, 400:2289.
[18] Svec F, Lv Y. Anal. Chem., 2015, 87:250.
[19] Wu S B, Sun L L, Ma J F, Yang K G, Liang Z, Zhang L H, Zhang Y K. Talanta, 2011, 83:1748.
[20] Weed A K, Dvornik J, Stefancin J J, Gyapong A A, Svec F, Zajickova Z. J. Sep. Sci., 2014, 36:270.
[21] Safrany Á, Beiler B, Laszló K, Svec F. Polymer, 2005, 46:2862.
[22] Sui G, Zhong W H, Yang X P. Polym. Adv. Technol., 2010, 20:811.
[23] Beiler B, Vincze Á, Svec F, Safrany Á. Polymer, 2007, 48:3033.
[24] Vaast A, Terryn H, Svec F, Eeltink S. J. Chromatogr. A, 2014, 1374:171.
[25] Viklund C, Svec F, Fréchet J M J, Irgum K. Chem. Mater., 1996, 8:744.
[26] Krzesińska M. Journal of Achievements in Materials and Manufacturing Engineering. 2012, 55:45.
[27] Liu L H, Yang C X, Yan X P. J. Chromatogr. A, 2017, 1479:137.
[28] Nischang I. J. Chromatogr. A, 2013, 1287:38.
[29] Rozenbrand J, van Bennekom W P. J. Sep. Sci., 2015, 34:1934.
[30] Bai L G, Yang G L, Lei H, Wang Y, Yan C H. Chin. Sci. Bull., 2012, 57:2942.
[31] Wei Z, Zhang D D, Li C, Bai L, Liu H Y, Yan H Y. Anal. Methods, 2017, 9:2596.
[32] Akeroyd N, Klumperman B. Eur. Polym. J., 2011, 47:1207.
[33] Bai J Y, Ou J J, Zhang H Y, Ma S J, Shen Y H, Ye M L. J. Chromatogr. A, 2017, 1514:72.
[34] Lei H, Bai L, Zhang X, Yang G. J. Sep. Sci., 2014, 52:1211.
[35] Reyesortega F, Parraruiz F J, Averick S E, Rodriguez G, Aguilar M R, Matyjaszewski K, Roman J S. Polym. Chem., 2013, 4:2800.
[36] Lissant K J. J. Colloid Interface Sci., 1966, 22:462.
[37] Barlik N, Keskinler B, Kocakerim M M, Akay G. J. Appl. Polym. Sci., 2015, 132:42286.
[38] Barlik N, Keskinler B, Kocakerim M M, Akay G. Desalin. Water Treat., 2016, 57:26440.
[39] Sevsek U, Brus J, Je Drabek K, Krajnc P. Polymer, 2014, 55:410.
[40] Mert E H, Kaya M A, Yildirim H. Des. Monomers Polym., 2012, 15:113.
[41] Barbetta A, Dentini M, Leandri L, Ferraris G, Coletta A, Bernabei M. React. Funct. Polym., 2009, 69:724.
[42] Pulko I, Smrekar V, Podgornik A, Krajnc P. J. Chromatogr. A, 2011, 1218:2396.
[43] Yao C H, Qi L, Qiao J, Zhang H Z, Wang F Y, Chen Y, Yang G L. Talanta, 2010, 82:1332.
[44] Peng J X, Xia H Y, Liu K Q, Gao D, Yang M N, Yan N, Fang Y. J. Colloid Interface Sci., 2009, 336:780.
[45] Majer J, Krajnc P. Acta Chimica Slovenica, 2009, 56:629.
[46] Meng X, Zeng N, Zhang J, Jiang L, Dan Y. J. Colloid Interface Sci., 2017, 497:290.
[47] Cameron N R. Polymer, 2005, 46:1439.
[48] Sun X F, Chai Z K. J. Chromatogr. A, 2002, 943:209.
[49] Talebi M, Arrua R D, Gaspar A, Lacher N A, Wang Q, Haddad P R, Hilder E F. Anal. Bioanal.Chem., 2013, 405:2233.
[50] Wang J B, Wu F L, Xia R R, Qi Z, Lin X C, Xie Z H. J. Chromatogr. A, 2016, 1449:100.
[51] Plieva F M, Savina I N, Deraz S, Andersson J, Galaev I Y, Mattiasson B. J. Chromatogr. B, 2004, 807:129.
[52] Uygun M, Senay R H, Avcibasi N, Akgöl S. Appl. Biochem. Biotechnol., 2014, 172:1574.
[53] Ertürk G, Mattiasson B. J. Chromatogr. A, 2014, 1357:24.
[54] Plieva F, Bober B, Dainiak M, Galaev I Y, Mattiasson B. J. Mol. Recognit., 2006, 19:305.
[55] Plieva F M, Kirsebom H, Mattiasson B. J. Sep. Sci., 2011, 34:2164.
[56] Unlü N, Ceylan S, Erzengin M, Odabasi M. J. Sep. Sci., 2015, 34:2173.
[57] Alkan H, Cömert S C, Gürbüz F, Do Dgru M, Odabasi M. Artif. Cells Nanomed. Biotechnol., 2017, 45:90.
[58] Tozak K Ö, Erzengin M, Sargin I, Vnlü N. Excli J., 2013, 12:670.
[59] Ceylan S, Odabasi M. Artif Cells Nanomed Biotechnol, 2013, 41:376.
[60] Xin Y R, Xiong Q C, Bai Q H, Miyamoto M, Cong L, Shen Y H, Uyama H. Carbohydr. Polym., 2017, 157:429.
[61] Wang G W, Xin Y R, Uyama H. Carbohydr. Polym., 2015, 132:345.
[62] Wang G W, Xin Y R, Han W J, Uyama H. J. Appl. Polym. Sci., 2015, 132:345.
[63] Han W J, Xin Y R, Hasegawa U, Uyama H. Polym. Degrad. STab., 2014, 109:362.
[64] SproB J, Sinz A. J. Sep. Sci., 2015, 34:1958.
[65] Vlakh E G, Platonova G A, Tennikova T B. Methods Mol. Biol., 2014, 1129:303.
[66] Arora S, Saxena V, Ayyar B V. Methods, 2016, 116:84.
[67] Pfaunmiller E L, Paulemond M L, Dupper C M, Hage D S. Anal. Bioanal.Chem., 2013, 405:2133.
[68] Arrua R D, Alvarez Igarzabal C I. J. Sep. Sci., 2011, 34:1974.
[69] Tetala K K, van Beek T A. J. Sep. Sci., 2010, 33:422.
[70] Alkan H, Bereli N, Baysal Z, Denizli A. Biochem. Eng. J., 2010, 51:153.
[71] Leblebici P, Leblebici M E, Ferreira-da-silva F, Rodrigues A E, Pais L S. J. Chromatogr. B, 2014, 962:89.
[72] Reichelt S, Elsner C, Prager A, Naumov S, Kuballa J, Buchmeiser M R. Analyst, 2012, 137:2600.
[73] Flodrova D, Bobalova J, Lastovic kova M. Cereal Res. Commun., 2016, 44:286.
[74] Le Goff A, Gorgy K, Holzinger M, Haddad R, Zimmerman M, Cosnier S. Chemistry, 2011, 17:10216.
[75] Zheng H J, Ma J T, Feng W, Jia Q. J. Chromatogr. A, 2017, 1512:88.
[76] Zheng H J, Zhu T G, Li X Q, Ma J T, Jia Q. Anal. Chim. Acta, 2017, 983:141.
[77] Li Z, Rodriguez E, Azaria S, Pekarek A, Hage D S. Electrophoresis, 2017, 38:22.
[78] Mönster A, Hiller O, Grüger D, Blasczyk R, Kasper C. J. Chromatogr. A, 2011, 1218:706.
[79] Hoefferer L, Glauser I, Gaida A, Willimann K, Marques Antunes A, Siani B, Wymann S, Widmer E, El Menyawi I, Bolli R, Spycher M, Imboden M. Transfusion, 2015, 55:S117.
[80] Lau B P Y, Lewis D, Lawrence J F. J. Mass Spectrom., 2015, 32:655.
[81] Akmacic I T, Nemec B, Vidic U, Malic S, Miklic K, Cernigoj U, Vidic J, Krajnc N L, Strancar A, Lauc G, Rovis T L, Bakovis M P. Croat. Chem. Acta, 2016, 89:1.
[82] Smits N G E, Blokland M H, Wubs K L, Nessen M A, Ginkel L A V, Nielen M W F. Anal. Bioanal.Chem., 2015, 407:6041.
[83] Brgles M, Kurtovic T, Kovac ic L, Krizaj I, Barut M, Lang B M, Allmaier G, Marchetti-Deschmann M, Halassy B. Anal. Bioanal.Chem., 2014, 406:293.
[84] Denizli A l, Köktürk G, Yavuz H, Piskin E. J. Appl. Polym. Sci., 2015, 74:2803.
[85] Urtasun N, Baieli M F, Hirsch D B, Martinez-Ceron M C, Cascone O, Wolman F J. Food Bioprod. Process., 2017, 103:58.
[86] Cimen D, Yilmaz F, Percin I, Türkmen D, Denizli A. Sci. Eng. C Mater. Biol.Appl., 2015, 56:318.
[87] Uzun L, Armutcu C, Bicen Ö, Ersöz A, Say R, Denizli A. Colloids Surf. B Biointerfaces, 2013, 112:1.
[88] Espina-Benitez M B, Randon J, Demesmay C, Dugas V. J. Chromatogr. A, 2017, 1494:65.
[89] Zhang Q C, Cheng Y Y, Li G K, Xiao X H. Chin. Chem. Lett., 2015, 26:1470.
[90] Li D J, Li Y, Li X L, Bie Z J, Pan X H, Zhang Q, Liu Z. J. Chromatogr. A, 2015, 1384:88.
[91] Man Y, Peng G, Lv X F, Liang Y L, Wang Y, Chen Y, Deng Y L. Chromatographia, 2015, 78:157.
[92] Peng M J, Xiang H Y, Hu X, Shi S Y, Chen X Q. J. Chromatogr. A, 2016, 1474:8.
[93] Xing R R, Wang S S, Bie Z J, Hui H, Zhen L. Nat. Protoc., 2017, 12:964.
[94] Lin Z, Wang J, Tan X Q, Sun L X, Yu R F, Yang H H, Chen G N. J. Chromatogr. A, 2013, 1319:141.
[95] Porath J, Carlsson J, Olsson I, Belfrage G. Nature, 1975, 258:598.
[96] 韦誉(Wei Y), 陈露(Chen X), 杨胜超(Yang S C), 吕清慧(Lv Q H), 叶芳贵(Ye F G), 赵书林(Zhao S L). 分析化学(Chin. J. Anal. Chem.), 2014, 42:495.
[97] Min J S, Tan L, Min H J, Kim J H, Choe W S. J. Chromatogr. A, 2011, 1218:5273.
[98] Rajak P, Vijayalakshmi M A, Jayaprakash N S. Biomed. Chromatogr., 2012, 26:1488.
[99] Savane T S, Kumar S, Janakiraman V N, Kamalanathan A S, Vijayalakshmi M A. J. Chromatogr. B, 2016, 1021:129.
[100] Zeinab M, Hiam K M, Edmond C, Assem E. J. Chromatogr. B, 2015, 975:77.
[101] Pavan G L, Lazzarotto Bresolin I T, Grespan A, Alves Bueno S M. J. Chromatogr. B, 2017, 1052:10.
[102] Zhao Q, Li X F, Le X C. Anal. Chem., 2008, 80:3915.
[103] Wang Z, Zhao J C, Lian H Z, Chen H Y. Talanta, 2015, 138:52.
[104] Chen Y B, Deng N, Wu C, Liang Y, Jiang B, Yang K G, Liang Z, Zhang L H, Zhang Y K. Talanta, 2016, 154:555.
[105] Domingues D S, Souza I D, Queiroz M E. J. Chromatogr. B, 2015, 993/994:26.
[106] Zhang X P, Wang T D, Zhang H Z, Han B, Wang L S, Kang J W. J. Chromatogr. A, 2014, 1359:84.
[107] Qu H H, Wang Y, Shan W C, Zhang Y, Feng H B, Sai J Y, Wang Q G, Zhao Y. J. Chromatogr. B, 2015, 985:197.
[1] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[2] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[3] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[4] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[5] 那向明, 周炜清, 李娟, 苏志国, 马光辉. 高分子多孔微球产品的制备及其在类病毒颗粒分离纯化中的应用[J]. 化学进展, 2018, 30(1): 5-13.
[6] 孙晓杰, 邢钧, 翟毓秀, 李兆新. 离子液体在气相色谱固定相中的应用[J]. 化学进展, 2014, 26(04): 647-656.
[7] 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 任其龙. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展, 2014, 26(0203): 415-423.
[8] 沈爱金, 郭志谋, 梁鑫淼. 亲水作用色谱固定相的发展及应用[J]. 化学进展, 2014, 26(01): 10-18.
[9] 谢生明, 袁黎明. 金属-有机骨架材料用于色谱固定相[J]. 化学进展, 2013, 25(10): 1763-1770.
[10] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[11] 李鹏章, 王粤博*. 蛋白质组学中磷酸化肽的常用富集方法[J]. 化学进展, 2012, (9): 1785-1793.
[12] 邵锋, 陈坤, 罗志辉, 王艳君, 陆冬莲, 韩鹤友* . SERS技术在疾病诊断和生物分析中的应用[J]. 化学进展, 2012, 24(12): 2391-2402.
[13] 邱素艳, 高森, 林振宇, 陈国南. 点击化学最新进展[J]. 化学进展, 2011, 23(4): 637-648.
[14] 卢时湧 吴章桂 叶伟东 吴国锋 潘一斌 钱俊青. 应用前沿亲和色谱研究分子之间相互作用及其应用[J]. 化学进展, 2010, 22(01): 148-152.
[15] 耿利娜,姜萍,徐建栋,车宝泉,屈锋,邓玉林. 纳米技术在毛细管电泳和微流控芯片电泳生物大分子分离中的应用* [J]. 化学进展, 2009, 21(09): 1905-1921.