English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 628-638 DOI: 10.7536/PC170909 前一篇   后一篇

• 综述 •

可作为碳纳米管片段的共轭芳烃大环的设计合成

周启峰, 江波*, 杨海波*   

  1. 华东师范大学化学与分子工程学院 上海 200062
  • 收稿日期:2017-09-08 修回日期:2017-12-04 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 江波,e-mail:bjiang@chem.ecnu.edu.cn;杨海波,e-mail:hbyang@chem.ecnu.edu.cn E-mail:bjiang@chem.ecnu.edu.cn;hbyang@chem.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21625202)资助

Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments

Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*   

  1. College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received:2017-09-08 Revised:2017-12-04 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21625202).
设计合成可作为碳纳米管片段的共轭芳烃大环近年来吸引了化学家们广泛的研究兴趣,人们希望从这些共轭芳烃大环出发,通过利用“自下而上”的策略合成单壁碳纳米管。需要指出的是,传统制备碳纳米管的方法,如电弧法、化学气相沉积法等,都很难形成均一的单壁碳纳米管。而这种“自下而上”的策略为高效合成尺寸均一的单壁碳纳米管提供了可行的方法,这种合成方法因此成为了当下合成单壁碳纳米管的热点,但也仍是一大挑战。本文从二维碳纳米环、碳纳米带和三维碳纳米笼三个方面概述关于这类共轭芳烃大环研究的新进展,着重介绍了共轭碳纳米环的设计原则和合成方法,并突出介绍了多环芳烃碳纳米环。多环芳烃通常具有优良的光电性质,以其为基元构筑的共轭碳纳米结构不仅可以作为碳纳米管的合成前体,而且其自身也会表现出新的光电性质。
Design and synthesis of conjugated aromatic macrocyclic rings that are directly linked by C—C bonds has been currently attracting wide interests because these aromatic macrocyclic rings can be used for synthesis of single-walled carbon nanotubes through the "bottom-up" stratety. Conventional methods of preparing carbon nanotubes, such as arc method, chemical vapor deposition method and so on, are difficult to form the uniform single-walled carbon nanotubes. This "bottom-up" synthetic strategy provides a feasible method for the highly efficient synthesis of highly homogeneous single-walled carbon nanotubes. For this reason, the "bottom-up" synthetic strategy has become an on-going hot spot for the synthesis of single-walled carbon nanotubes, although it is still a big challenge. This article summarizes new progress in the design and synthesis of two-dimensional (2D) carbon nanorings, 2D carbon nanobelts and three-dimensional (3D) carbon nanocages. In particular, this article focuses on the design principle and synthesis methods of 2D carbon nanorings and highlights the polycyclic aromatic hydrocarbon (PAHs) carbon nanorings. Polycyclic aromatic hydrocarbons usually have excellent photoelectric properties. Thus, the conjugated carbon nanohoops constructed by these PAHs moieties may exhibit new photoelectric properties.
Contents
1 Introduction
2 2D conjugated carbon nanoring
2.1 Cycloparaphenylenes
2.2 Carbon nanoring of polycyclic aromatic hydrocarbons
3 2D conjugated carbon nanobelts
4 3D conjugated carbon nanocages
5 Properties and applications
6 Conclusion

中图分类号: 

()
[1] Iijima S. Nature, 1991, 354:56.
[2] Baughman R H, Zakhidov A A, Heer W A. Science, 2002,297:787.
[3] Wang W, Wang Y X, Yang H B. Org. Chem. Front., 2014, 1:1005.
[4] Segawa Y, Yagi A, Matsui K, Itami K. Angew. Chem. Int. Ed., 2016, 55:5136.
[5] Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130:17646.
[6] Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K.Angew. Chem. Int. Ed., 2009, 48:6112.
[7] Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed., 2010, 49:757.
[8] (a) Omachi H, Segawa Y, Itami K. Acc. Chem. Res., 2012, 45:1378.;
(b) Sisto T J, Jasti R. Synlett., 2012, 23:483.;
(c) Yamago S, Kayahara E, Iwamoto T. Chem. Rec., 2014, 14:84.;
(d) Lewis S E. Chem. Soc. Rev., 2015, 44:2221v;
(e) Darzi E R, Jasti R. Chem. Soc. Rev., 2015, 44:6401.;
(f) Evans P, Jasti R. PolyarenesI, Berlin, Heidelberg,:Springer, 2014. 249.
[9] (a) Batson J M, Swager T M. Synlett., 2013, 24:2545.;
(b) Huang C F, Huang Y W, Akhmedov N G, Popp B V, Peterson J L, Wang K K. Org. Lett., 2014, 16:2672.;
(c) Omachi H, Segawa Y, Itami K. Org. Lett., 2011, 13:2480.
[10] (a) Sisto T J, Tian X, Jasti R. J. Org. Chem., 2012, 77:5857.;
(b) Golling F E, Quernheim M, Wagner M, Nishiuchi T, Mîllen K. Angew. Chem. Int. Ed., 2014, 53:1525.
[11] (a) Lu D P, Wu H T, Dai Y F, Shi H, Shao X, Yang S F, Yang J L, Du P W. Chem. Commun., 2016, 52:7164.;
(b) Lu D P, Cui S S, Du P W. Synlett, 2017, 50:8342.
[12] Yagi A, Venkataramana G, Segawa Y, Itami K. Chem. Commun., 2014, 50:957.
[13] Tran-Van A F, Huxol E, Basler J M, Neuburger M, Adjizian J J, Ewels C P, Wegner H A. Org. Lett., 2014, 16:1594.
[14] Xia J L, Golder M R, Foster M E, Wong B M, Jasti R. J. Am. Chem. Soc., 2012, 134:19709.
[15] Ishii Y, Matsuura S, Segawa Y, Itami K. Org. Lett., 2014, 16:2174.
[16] Hitosugi S, Nakanish W, Yamasaki T, Isobe H. Nat. Commun., 2011, 2:492.
[17] Hitosugi S, Yamasaki T, Isobe H. J. Am. Chem. Soc., 2012, 134:12442.
[18] Matsuno T, Kamata S, Hitosugi S, Isobe H. Chem. Sci., 2013, 4:3179.
[19] Sun Z, Sarkar P, Suenaga T, Sato S, Isobe H. Angew. Chem. Int. Ed., 2015, 54:12800.
[20] Nakanishi W, Yoshioka T, Taka H, Xue J Y, Kita H, Isobe H. Angew. Chem. Int. Ed., 2011, 50:5323.
[21] Yagi A, Segawa Y, Itami K. J. Am. Chem. Soc., 2012, 134:2962.
[22] Sun Z, Suenaga T, Sarkar P, Sato S, Kotani M, Isobe H. Proc. Natl. Acad. Sci., 2016, 113:8109.
[23] Sarkar P, Sun Z, Tokuhira T, Kotani M, Sato S, Isobe H. ACS Cent. Sci., 2016, 2:740.
[24] Hitosugi S, Sato S, Matsuno T, Koretsune T, Arita R, Isobe H. Angew. Chem. Int. Ed., 2017, 56:9106.
[25] Lu D P, Zhuang G L, Wu H T, Wang S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2017, 56:158.
[26] Nishiuchi T, Feng X L, Enkelmann V, Wagner M, Müllen K. Chem. Eur. J., 2012, 18:16621.
[27] Iwamoto T, Kayahara E, Yasuda N, Suzuki T, Yamago S. Angew. Chem. Int. Ed., 2014, 53:6430.
[28] Kayahara E, Qu R, Kojima M, Iwamoto T, Suzuki T, Yamago S. Chem. Eur. J., 2015, 21:18939.
[29] Heilbronner E. Helv. Chim. Acta, 1954, 37:921.
[30] Kohnke F H, Slawin A M Z, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1987, 26:892.
[31] Standera M, Schlüter A D. Fragments of Fullerenes and Carbon Nanotubes. 2012. 343.
[32] Cory R M, McPhail C L, Dikmans A J, Vittal J J. Tetrahedron Lett., 1996, 37:1983.
[33] Matsui K, Fushimi M, Segawa Y, Itami K. Org. Lett., 2016, 18:5352.
[34] Vögtle F, Schroder A, Karbach D. Angew. Chem. Int. Ed., 1991, 30:575.
[35] Kammermeier S, Jones P G, Herges R. Angew. Chem. Int. Ed., 1996, 35:2669.
[36] Iyoda M, Kuwatani Y, Nishinaga T, Takase M, Nishiuchi T. Fragments of Fullerenes and Carbon Nanotubes. 2012. 311.
[37] Merner B L, Dawe L N, Bodwell G J. Angew. Chem. Int. Ed., 2009, 48:5487.
[38] Scott L T. Angew. Chem. Int. Ed., 2003, 42:4133.
[39] Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356:172.
[40] Mastalerz M. Angew. Chem. Int. Ed., 2010, 49:5042.
[41] Hof F, Craig S L, Nuckolls C, Rebek J J. Angew. Chem. Int. Ed., 2002, 41:1488.
[42] Mal P, Breiner B, Rissanen K, Nitschke J R. Science, 2009, 324:1697.
[43] Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc., 2014, 136:16452.
[44] Yoshizawa M, Klosterman J K, Fujita M. Angew. Chem. Int. Ed., 2009, 48:3418.
[45] Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N,Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4:2694.
[46] Ozaki N, Sakamoto H, Nishihara T, Fujimori T, Hijikata Y, Kimura R, Irle S, Itami K. Angew. Chem. Int. Ed., 2017, 56:11196.
[47] Kubota N, Segawa Y, Itami K. J. Am. Chem. Soc., 2015, 137:1356.
[48] Sisto T J, Golder M R, Hirst E S, Jasti R. J. Am. Chem. Soc., 2011, 133:15800.
[49] Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc., 2011, 133:8354.
[50] Matsuno T, Kamata S, Sato S, Yokoyama A, Sarkar P, Isobe H. Angew. Chem. Int. Ed., 2017, 56:15020.
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[3] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[4] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[5] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[6] 黄妮, 许峰, 夏江滨. 聚噻吩的固相聚合及其应用[J]. 化学进展, 2019, 31(8): 1103-1115.
[7] 陈晓红, 王允中, 张永明, 袁望章. 非典型发光化合物的簇聚诱导发光[J]. 化学进展, 2019, 31(11): 1560-1575.
[8] 史丹丹, 张西沙, 张德清. 含有七元碳环的有机共轭分子在光电材料中的应用[J]. 化学进展, 2018, 30(5): 658-672.
[9] 杜瑾, 廖睿, 张幸林, 孙会彬, 黄维. 电致荧光变色材料的主要分类及变色机理[J]. 化学进展, 2018, 30(2/3): 286-294.
[10] 林益军, 朱云龙, 旷桂超, 喻桂朋*, 金日光. 用于放射性碘吸附的多孔有机聚合物[J]. 化学进展, 2017, 29(7): 766-775.
[11] 卢晓梅, 李杰, 胡文博, 邓卫星, 范曲立, 黄维. 水溶性共轭聚合物分子刷的研究进展[J]. 化学进展, 2016, 28(4): 528-540.
[12] 孙鹏飞, 候焕知, 范曲立, 黄维. 水溶性含糖共轭聚合物的制备及应用[J]. 化学进展, 2016, 28(10): 1489-1500.
[13] 罗杰, 李朝威, 兰竹瑶, 陈名海, 姚亚刚, 赵岳. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展, 2015, 27(9): 1158-1166.
[14] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[15] 舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394.