English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 586-600 DOI: 10.7536/PC171248 前一篇   后一篇

所属专题: 酶化学

• 综述 •

氟代亚氨基糖的合成与糖苷酶抑制活性

李意羡1,2*, 贾月梅1,2, 俞初一1,2,3*   

  1. 1. 中国科学院化学研究所分子识别与功能重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049;
    3. 江西师范大学国家单糖化学合成工程技术研究中心 南昌 330022
  • 收稿日期:2018-01-02 修回日期:2018-02-09 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 李意羡,e-mail:tamarali@iccas.ac.cn;俞初一,e-mail:yucy@iccas.ac.cn E-mail:tamarali@iccas.ac.cn;yucy@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21772206,21642012)资助

Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars

Yixian Li1,2*, Yuemei Jia1,2, Chuyi Yu1,2,3*   

  1. 1. CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
  • Received:2018-01-02 Revised:2018-02-09 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21772206, 21642012).
亚氨基糖由于具有重要的糖苷酶抑制活性、抗病毒和抗肿瘤活性等已经在新药创制中显示出巨大的发展潜力。系统研究此类化合物的构效关系有望发现高活性和高选择性的先导化合物。氟代是考察构效关系的常用方法之一。本文总结了氟代亚氨基糖的合成方法与化合物的糖苷酶抑制活性。合成方法中氟的来源包括含氟砌块、氟代糖或氟代试剂,三种合成策略各有优缺点与适用范围。基于氟代亚氨基糖的糖苷酶抑制活性研究,本文初步归纳了一些有代表性的重要亚氨基糖的构效关系,明确了糖环完整性对化合物糖苷酶抑制活性的重要意义。在此基础上对亚氨基糖的侧链或并环环系修饰则可能分别影响抑制谱和糖苷酶抑制活性。氟代亚氨基糖的研究成果是对亚氨基糖化学的重要贡献,以氟代为工具,必将进一步完善与修正亚氨基糖的构效关系,为设计合成具有潜在药物活性的亚氨基糖类化合物提供依据,并极大促进相关的新药创制工作。
Iminosugars have shown great potential in pharmaceutical industry due to their potent glycosidase inhibition, anti-virus and anti-cancer activities. Systematic study of structure-activity relationship of iminosugars will help to develop highly active and selective lead compounds. Fluorination is usually the most used method of studying structure-activity relationship. This review summarized the reported synthetic strategies of fluorinated iminosugars and the related glycosidase inhibitory activities. The synthetic strategies are roughly categorized to three types, namely, fluorine containing building blocks, fluorinated sugars and fluorinating reagents, and each of them is reviewed with merits, disadvantages and its application. The structure-activity relationship of some representative iminosugars is then preliminarily concluded based on the reported glycosidase inhibitory activities of fluorinated iminosugars. Intact iminosugar ring is believed important for interaction with enzymes, while fluorination of side chain and the fused ring would influence inhibitory spectrum and potency, respectively. Therefore, the current research results of fluorinated iminosugars have made important contributions to iminosugar chemistry. With fluorine as tool, the structure-activity relationship of iminosugars can be further completed and corrected in the future, and therefore would certainly help to provide profound foundation for the design and syntheses of iminosugars with potential medicinal values, and thus effectively promote the related drug discovery.
Contents
1 Iminosugar and its application
2 Synthetic strategies of fluorinated iminosugars and related biological activity study
2.1 Synthesis of fluorinated iminosugars from fluorinated building blocks
2.2 Synthesis of fluorinated iminosugars from fluorinated sugars
2.3 Synthesis of fluorinated iminosugars by subsequent introduction of fluorine
3 Fluorination in structure-activity relationship study of iminosugars

中图分类号: 

()
[1] Butters T D, Dwek R A, Platt F M. Chem. Rev., 2000, 100:4683.
[2] Wong C H, Dumas D P, Ichikawa Y, Koseki K, Danishefsky S J, Weston B W, Lower J B. J. Am Chem. Soc., 1992, 114:7321.
[3] Compain P, Martin O R. Curr. Top. Med. Chem., 2003, 3:541.
[4] Bols M, Hazelle R, Thomsen I B. Chem. Eur. J., 1997, 3:940.
[5] Somsak L, Nagy V, Hadady Z, Docsa T, Gergely P. Curr. Pharm. Des., 2003, 9:1177.
[6] Moriyama H, Tsukida T, Inoue Y, Yokota K, Yoshino K, Kondo H, Miura N, Nishimura S I. J. Med. Chem., 2004, 47:1930.
[7] Lee R E, Smith M D, Nash R J, Griffiths R C, McNeil M, Grewal R K, Yan W, Besra G S, Brennan P J, Fleet G W J. Tetrahedron Lett., 1997, 38:6733.
[8] Liautard V, Desvergnes V, Itoh K, Liu H W, Martin O R. J. Org. Chem., 2008, 73:3103.
[9] Davis B G. Tetrahedron:Asymmetry, 2009, 20:652.
[10] Asano N. Cell. Mol. Life Sci., 2009, 66:1479.
[11] Nash R J, Kato A, Yu C Y, Fleet G W J. Future Med. Chem., 2011, 3:1513.
[12] Horne G, Wilson F X, Tinsley J, Williams D H, Storer R. Drug Discov. Today, 2011, 16:107.
[13] Allan G, Ouadid-Ahidouch H, Sanchez-Fernandez E M, Risquez-Cuadro R, Garcia Fernandez J M, Ortiz-Mellet C, Ahidouch A. Plos One, 2013, 8:e76411.
[14] Sanchez-Fernandez E M, Risquez-Cuadro R, Chasseraud M, Ahidouch A, Mellet C O, Ouadid-Ahidouch H, Fernandez J M G. Chem. Commun., 2010, 46:5328.
[15] Wojtowicz K, Januchowski R, Sosinska P, Nowicki M, Zabel M. Oncology Reports, 2016, 35:2896.
[16] Dowall S D, Bewley K, Watson R J, Vasan S S, Ghosh C, Konai M M, Gausdal G, Lorens J B, Long J, Barclay W, Garcia-Dorival I, Hiscox J, Bosworth A, Taylor I, Easterbrook L, Pitman J, Summers S, Chan-Pensley J, Funnell S, Vipond J, Charlton S, Haldar J, Hewson R, Carroll M W. Viruses-Basel, 2016, 8:277.
[17] De Bruijne J, Weegink C J, Jansen P L M, Reesink H W. Vox Sang., 2009, 97:1.
[18] Hong Y P, Chen C, Guo W Y, Zhao L, Mei F C, Xiang M W, Wang W X. Arch. Med. Res., 2016, 47:436.
[19] Adrian H, David C, Ma C, Paul T. Immunol. Cell Biol., 2015, 93:A10.
[20] Hibberd A D, Clark D A, Trevillian P R, McElduff P. World J. Transplant., 2016, 6:206.
[21] Luan Z, Higaki K, Aguilar-Moncayo M, Ninomiya H, Ohno K, Isabel Garcia-Moreno M, Ortiz Mellet C, Garcia Fernandez J M, Suzuki Y. Chembiochem, 2009, 10:2780.
[22] Li Z H, Li T H, Dai S X, Xie X L, Ma X P, Zhao W, Zhang W M, Li J, Wang P G. ChemBioChem, 2013, 14:1239.
[23] Boyd R E, Lee G, Rybczynski P, Benjamin E R, Khanna R, Wustman B A, Valenzano K J. J. Med. Chem., 2013, 56:2705.
[24] Whitby K, Pierson T C, Geiss B, Lane K, Engle M, Zhou Y, Doms R W, Diamond M S. J. Virol., 2005, 79:8698.
[25] Whitby K, Taylor D, Patel D, Ahmed P, Tyms A S. Antivir. Chem. Chemother., 2004, 15:141.
[26] Rathore A P S, Paradkar P N, Watanabe S, Tan K H, Sung C, Connolly J E, Low J, Ooi E E, Vasudevan S G. Antivir. Res., 2011, 92:453.
[27] Watanabe S, Rathore A P S, Sung C, Lu F, Khoo Y M, Connolly J, Low J, Ooi E E, Lee H S, Vasudevan S G. Antivir. Res., 2012, 96:32.
[28] Sung C, Wei Y, Watanabe S, Lee H S, Khoo Y M, Fan L, Rathore A P S, Chan K W K, Choy M M, Kamaraj U S, Sessions O M, Aw P, de Sessions P F, Lee B, Connolly J E, Hibberd M L, Vijaykrishna D, Wijaya L, Ooi E E, Low J G H, Vasudevan S G. Plos Neglet. Trop. D., 2016, 10:e0004851.
[29] Yoshida E, Kunimoto D, Lee S S, Sherman M, Heathcote J, Enns R. Gastroenterology, 2006, 130:A784.
[30] Kaita K, Yoshida E, Kunimoto D, Anderson F, Morris S, Marotta P, Scully L, Peltekian K, Enns R, Diaz-Mitoma F, Lee S, Worobetz L, Pankovich J, Petersen A K. J. Hepatol., 2007, 46:S56.
[31] Chen L, Lu J, Huang T, Yin J, Wei L, Cai Y D. Plos One, 2014, 9:e107767.
[32] Taylor D L, Sunkara P S, Liu P S, Kang M S, Bowlin T L, Tyms A S. AIDS, 1991, 5:693.
[33] Taylor D L, Kang M S, Brennan T M, Bridges C G, Sunkara P S, Tyms A S. Antimicrob. Agents Chemother., 1994, 38:1780.
[34] Compain P, Martin O R. Iminosugars:From Synthesis to Therapeutic Applications, 1st ed. New York:Wiley-VCH, 2007.
[35] Mehta A, Zitzmann N, Rudd P M, Bock T M, Dwek R A. FEBS Lett., 1998, 430:17.
[36] Overkleeft H S, Renkema G H, Neele J, Vianello P, Hung I O, Strijland A, van der Burg A M, Koomen G J, Pandit U K, Aerts J M F G. J. Biol. Chem., 1998, 273:26522.
[37] Zitzmann N, Mehta A S, Carrouée S, Butters T D, Platt F M, McCauley J, Blumberg B S, Dwek R A, Block T M. Proc. Nat. Acad. Sci. USA, 1999, 96:11878.
[38] Li Q, Ye X S. Isr J. Chem., 2015, 55:336.
[39] Li X L, Zhu Z G, Duan K F, Chen H, Li Z W, Li Z, Zhang P Z. Tetrahedron, 2009, 65:2322.
[40] Godin G, Compain P, Masson G, Martin O R, keda K, Yu L, Asano N. Bioorg. Med. Chem. Lett., 2004, 14:5991.
[41] Yu L, Ikeda K, Kato A, Adachi I, Godin G, Compain P, Martin O R, Asano N. Bioorg. Med. Chem., 2006, 14:7736.
[42] Jakobsen P, Lundbeck J M, Kristiansen M, Breinholt J, Demuth H, Pawlas J, Torres Candela M P, Andersen B, Westergaard N, Lundgren K, Asano N. Bioorg. Med. Chem., 2001, 9:733.
[43] Miles R W, Tyler P C, Furneaux R H, Bagdassarian C K, Schramm V L. Biochemistry, 1998, 37:8615.
[44] Lewandowicz A, Tyler P C, Evans G B, Furneaux R H, Schramm V L. J. Biol. Chem., 2003, 278:31465.
[45] Wang D, Li Y H, Wang Y P, Gao R M, Zhang L H, Ye X S. Bioorg. Med. Chem., 2011, 19:41.
[46] Li X L, Qin Z B, Wang R, Chen H, Zhang P Z. Tetrahedron, 2011, 67:1792.
[47] Begue J P, Bonnet-Delpon D. Actualite Chimique, 2006, 83.
[48] Ojima I, Fluorine in Medicinal Chemistry and Chemical Biology, 1st ed. Wiley-Blackwell:Chichester, 2009.
[49] 李意羡(Li Y X). 中国科学院研究生院博士学位论文(Doctoral Dissertation of the Graduate University of Chinese Academy of Sciences), 2011.
[50] Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem. Rev., 2015, 115:871.
[51] Ni C F, Hu M Y, Hu J B. Chem. Rev., 2015, 115:765.
[52] Kajimoto T, Liu K K C, Pederson R L, Zhong Z, Ichikawa Y, Porco J A, Wong C H. J. Am. Chem. Soc., 1991, 113:6187.
[53] Arnone A, Bravo P, Donadelli A, Resnati G. Tetrahedron, 1996, 52:131.
[54] Arnone A, Bravo P, Donadelli A, Resnati G. J. Chem. Soc., Chem. Commun., 1993, 984.
[55] Qiu X L, Qing F L. J. Org. Chem., 2005, 70:3826.
[56] Qiu X L, Qing F L. Bioorg. Med Chem., 2005, 13:277.
[57] Wang R W, Qing F L. Org. Lett., 2005, 7:2189.
[58] Wang R W, Qiu X L, Bols M, Ortega-Caballero F, Qing F L. J. Med. Chem., 2006, 49:2989.
[59] Xu X H, Qiu X L, Zhang X G, Qing F L. J. Org. Chem., 2006, 71:2820.
[60] Chen Q, Qing F L. Tetrahedron, 2007, 63:11965.
[61] Wang B L, Jiang Z X, You Z W, Qing F L. Tetrahedron, 2007, 63:12671.
[62] Xu X H, You Z W, Zhang X G, Qing F L. J. Fluorine Chem., 2007, 128:535.
[63] Yang Y Y, Xu J, You Z W, Xu X H, Qiu X L, Qing F L. Org. Lett., 2007, 9:5437.
[64] Yue X Y, Wu Y Y, Qing F L. Tetrahedron, 2007, 63:1560.
[65] Yue X Y, Qiu X L, Qing F L. J. Fluorine Chem., 2008, 129:866.
[66] Li R J, Bols M, Rousseau C, Zhang X G, Wang R W, Qing F L. Tetrahedron, 2009, 65:3717.
[67] Yang Y, Zheng F, Bols M, Marinescu L G, Qing F L. J. Fluorine Chem., 2011, 132:838.
[68] Yang Y, Zheng F, Qing F L. Tetrahedron, 2011, 67:3388.
[69] Asano N, Ikeda K, Yu L, Kato A, Takebayashi K, Adachi I, Kato I, Ouchi H, Takahata H, Fleet G W J. Tetrahedron:Asymmetry, 2005, 16:223.
[70] Blackburn C M, England D A, Kolkmann F. Chem. Commun., 1981, 930.
[71] Lillelund V H, Jensen H H, Liang X F, Bols M. Chem. Rev., 2002, 102:515.
[72] Biffinger J C, Kim H W, DiMagno S G. ChemBioChem, 2004, 5:622.
[73] Jiang X Y, Xu X H, Qing F L. Chin. Chem. Lett., 2014, 25:1115.
[74] Gautier-Lefebvre I, Behr G B, Guillerm G, Ryder N S. Bioorg. Med. Chem. Lett., 2000, 10:1483.
[75] Gautier-Lefebvre I, Behr G B, Guillerm G, Muzard M. Eur. J. Med. Chem., 2005, 40:1255.
[76] Djebaili M, Behr J B. J. Enzyme Inhib. Med. Chem., 2005, 20:123.
[77] Thaharn W, Bootwicha T, Soorukram D, Kuhakarn C, Prabpai S, Kongsaeree P, Tuchinda P, Reutrakul V, Pohmakotr M. J. Org. Chem., 2012, 77:8465.
[78] Korvorapun K, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pohmakotr M. Chem. Asian J., 2015, 10:948.
[79] Ruppert I, Schlich K, Volbach W. Tetrahedron Lett., 1984, 25:2195.
[80] Beckers H, Bürger H, Bursch P, Ruppert I. J. Organomet. Chem., 1986, 316:41.
[81] Prakash G K S, Krishnamurti R, Olah G A. J. Am. Chem. Soc., 1989, 111:393.
[82] Ma J A, Cahard D. J. Fluorine Chem., 2007, 128:975.
[83] Liu X, Xu C, Wang M, Liu Q. Chem. Rev., 2015, 115:683.
[84] Li Y X, Kinami K, Hirokami Y, Kato A, Su J K, Jia Y M, Fleet G W J, Yu C Y. Org. Biomol. Chem., 2016, 14:2249.
[85] Cruz F P d, Newberry S, Jenkinson S F, Wormald M R, Butters T D, Alonzi D S, Nakagawa S, Becq F, Norez C, Nash R J, Kato A, Fleet G W J. Tetrahedron Lett., 2011, 52:219.
[86] Forcella M, Parenti P, Cipolla L, Gregori M, Schirone R, Fusi P, Cardona F, Goti A, Parmeggiani C. Glycobiology, 2010, 20:1186.
[87] Parmeggiani C, Catarzi S, Matassini C, D'Adamio G, Morrone A, Goti A, Paoli P, Cardona F. ChemBioChem, 2015, 16:2054.
[88] Paszkowska J, Fernandez O N, Wandzik I, Boudesoque S, Dupont L, Plantier-Royon R, Behr J B. Eur. J. Org. Chem., 2015, 1198.
[89] Smart B E. J. Fluorine Chem., 2001, 109:3.
[90] Purser S, Moore P R, Swallow S, Gouverneur V. Chem. Soc. Rev., 2008, 37:320.
[91] Matkhalikova S F, Malikov V M, Yunusov S Y. Khim. Prir. Soedin., 1969, 5:30.
[92] Matkhalikova S F, Malikov V M, Yunusov S Y. Khim. Prir. Soedin., 1969, 5:606.
[93] Khanov M T, Sultanov M B, Egorova T A. Farmakol. Alkaloidov Serdech. Glikoyidov., 1971, 210.
[94] Shibano M, Tsukamoto D, Masuda A, Tanaka Y, Kusano G. Chem. Pharm. Bull., 2001, 49:1362.
[95] Tsou E L, Chen S Y, Yang M H, Wang S C, Cheng T R R, Cheng W C. Bioorg. Med. Chem., 2008, 16:10198.
[96] Liu C Y, Meng A G, Zhan H. Acta Academiae Medicinae Militaris Tertiae, 2010, 32:369.
[97] 孟爱国(Meng A G), 刘春艳(Liu C Y), 马红翠(Ma H C). 中国实验方剂学杂志(Chinese Journal of Experimental Traditional Medical Formulae), 2011, 17(16):217.
[98] Li Y X, Iwaki R, Kato A, Jia Y M, Fleet G W J, Zhao X, Xiao M, Yu C Y. Eur. J. Org. Chem., 2016, 1429.
[99] Lee C K, Sim K Y, Zhu J. Tetrahedron, 1992, 48:8541.
[100] Lee C K, Jiang H X, Koh L L, Xu Y. Carbohydr. Res., 1993, 239:309.
[101] Andersen S M, Ebner M, Ekhart C W, Gradnig G, Legler G, Lundt I, Stütz A E, Withers S G, Wrodnigg T. Carbohydr. Res., 1997, 301:155.
[102] Berger A, Dax K, Gradnig G, Grassberger V, Stütz A E, Ungerank M, Legler G, Bause E. Bioorg. Med. Chem. Lett., 1992, 2:27.
[103] Revuelta J, Cicchi S, Goti A, Brandi A. Synthesis, 2007, 485.
[104] Wang W B, Huang M H, Li Y X, Rui P X, Hu X G, Zhang W, Su J K, Zhang Z L, Zhu J S, Xu W H, Xie X Q, Jia Y M, Yu C Y. Synlett, 2010, 3:488.
[105] Zhao W B, Nakagawa S, Kato A, Adachi I, Jia Y M, Hu X G, Fleet G W J, Wilson F X, Horne G, Yoshihara A, Izumori K, Yu C Y. J. Org. Chem., 2013, 78:3208.
[106] Zhu J S, Nakagawa S, Chen W, Adachi I, Jia Y M, Hu X G, Fleet G W J, Wilson F X, Nitoda T, Horne G, van Well R, Kato A, Yu C Y. J. Org. Chem., 2013, 78:10298.
[107] Hu X G, Bartholomew B, Nash R J, Wilson F X, Fleet G W J, Nakagawa S, Kato A, Jia Y M, Well R V, Yu C Y. Org. Lett., 2010, 12:2562.
[108] Zhao H, Kato A, Sato K, Jia Y M, Yu C Y. J. Org. Chem., 2013, 78:7896.
[109] Song Y Y, Kinami K, Kato A, Jia Y M, Li Y X, Fleet G W J, Yu C Y. Org. Biomol. Chem., 2016, 14:5157.
[110] Qian B C, Kamori A, Kinami K, Kato A, Li Y X, Fleet G W J, Yu C Y. Org. Biomol. Chem., 2016, 14:4488.
[111] Liautard V, Christina A E, Desvergnes V, Martin O R. J. Org. Chem., 2006, 71:7337.
[112] Li Y X, Huang M H, Yamashita Y, Kato A, Jia Y M, Wang W B, Fleet G W J, Nash R J, Yu C Y. Org. Biomol. Chem., 2011, 9:3405.
[113] Hendry D, Hough L, Richardson A C. Tetrahedron Lett., 1987, 28:4597.
[114] Pandey G, Dumbre S G, Pal S, Khan M I, Shabab M. Tetrahedron, 2007, 63:4756.
[115] Furneaux R H, Mason J M, Tyler P C. Tetrahedron Lett., 1994, 35:3143.
[116] Vurchio C, Cordero F M, Faggi C, Macchi B, Frezza C, Grelli S, Brandi A. Tetrahedron, 2015, 71:5806.
[117] Cordero F M, Vurchio C, Faggi C, Brandi A. Org. Chem. Front., 2016, 3:1651.
[118] Wu L, Chen P H, Liu G S. Org. Lett., 2016, 18:960.
[119] Thonhofer M, Gonzalez Santana A, Fischer R, Torvisco Gomez A, Saf R, Schalli M, Stütz A E, Withers S G. Carbohydr. Res., 2016, 420:6.
[120] Fan J Q, Ishii S, Asano N, Suzuki Y. Nat. Med., 1999, 5:112.
[121] Li Y X, Shimada Y, Adachi I, Kato A, Jia Y M, Fleet G W J, Xiao M, Yu C Y. J. Org. Chem., 2015, 80:5151.
[122] Li Y X, Shimada Y, Sato K, Kato A, Zhang W, Jia Y M, Fleet G W J, Xiao M, Yu C Y. Org. Lett., 2015, 17:716.
[123] Huang M H, Li Y X, Jia Y M, Yu C Y. Molecules, 2013, 18:6723.
[124] Win-Mason A L, Jongkees S A K, Withers S G, Tyler P C, Timmer M S M, Stocker B L. J. Org. Chem., 2011, 76:9611.
[125] Wang J T, Lin T C, Chen Y H, Lin C H, Fang J M. MedChemComm, 2013, 4:783.
[126] Stocker B L, Jongkees S A K, Win-Mason A L, Dangerfield E M, Withers S G, Timmer M S M. Carbohydr. Res., 2013, 367:29.
[127] Martínez R F, Araújo N, Jenkinson S F, Nakagawa S, Kato A, Fleet G W J. Bioorg. Med. Chem., 2013, 21:4813.
[128] Wu X, Zhang F Y, Zhu J, Song C, Xiong D C, Zhou Y, Cui Y, Ye X S. Chem. Asian J., 2014, 9:2260.
[129] Mattes H, Benezra C. Tetrahedron Lett., 1985, 26:5697.
[130] Petrier C, Luche J L. J. Org. Chem., 1985, 50:910.
[131] Nishimura Y, Kudo T, Kondo S, Takeuchi T. J. Antibiot., 1992, 45:963.
[132] Nishimura Y. Curr. Top. Med. Chem., 2003, 3:575.
[133] Banks R E, Smart B E, Tatlow J C, Organofluorine Chemistry, Principles and Commercial Applications, 1st ed. Plenum:New York, 1994.
[1] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[2] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[3] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[4] 代天志, 孙德群. 抗TB活性化合物的研究[J]. 化学进展, 2018, 30(11): 1784-1802.
[5] 刘如沁, 索志荣, 何乃珍, 陈爽, 黄明. 偶氮桥联二呋咱:合成及其分子结构-熔点的构效关系[J]. 化学进展, 2017, 29(5): 476-490.
[6] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[7] 宋钊宁, 冯翔, 刘熠斌, 杨朝合, 周兴贵. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773.
[8] 郭键, 贺耘, 叶新山. 唾液酸转移酶抑制剂的设计与发现[J]. 化学进展, 2016, 28(11): 1712-1720.
[9] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[10] 童敏曼, 赵旭东, 解丽婷, 刘大欢*, 阳庆元, 仲崇立*. 金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, (9): 1646-1655.
[11] 张鹭 侯玉霞 袁会珠 覃兆海. 复合物Ⅲ抑制剂型杀菌剂——结构类型和作用机理*[J]. 化学进展, 2010, 22(09): 1852-1868.
[12] 李征 李援朝. 结构多样性与构效关系——雷公藤新药研究与开发[J]. 化学进展, 2009, 21(12): 2483-2491.
[13] 张锁江 姚晓倩 刘晓敏. 离子液体构效关系及应用*[J]. 化学进展, 2009, 21(11): 2465-2473.
[14] 刘华臣,董爱君,高春梅,蒋宇扬. 白藜芦醇结构修饰及药理活性[J]. 化学进展, 2009, 21(0708): 1500-1506.
[15] 刘幸海,董卫莉,张传玉,王宝雷,马翼,李正名. KARI酶及其抑制剂[J]. 化学进展, 2008, 20(11): 1788-1797.