English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 547-563 DOI: 10.7536/PC171251 前一篇   后一篇

• 综述 •

CO2:羧基化反应的C1合成子

张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*   

  1. 华南理工大学 化学与化工学院 广东省功能分子工程重点实验室 广州 510640
  • 收稿日期:2018-01-02 修回日期:2018-02-27 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 江焕峰e-mail:jianghf@scut.edu.cn E-mail:jianghf@scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.2016YFA0602900)资助

CO2: C1 Synthon in Carboxylation Reactions

Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*   

  1. Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2018-01-02 Revised:2018-02-27 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Program on Key Research Project (No.2016YFA0602900) for financial support.
基于资源与环境的考虑,以二氧化碳为原料的有机合成研究近年来日益受到科学家们的关注,其中以二氧化碳为C1合成子参与的过渡金属催化羧基化反应由于可有效构建各种羧酸类化合物及其衍生物,是二氧化碳利用和实现碳循环的理想途径之一。本文综述了催化活化二氧化碳与亲电试剂、烃类C—H键化合物、亲核试剂等通过构建新碳-碳键实现羧基化反应的最新研究进展。
Recently organic synthesis using carbon dioxide as the raw material has attracted considerable attention from scientists because of the resourceful and environmental factors. Especially, transition metal-catalyzed carboxylation reaction is an efficient method to construct carboxylic acids and their derivatives, which is regarded as one of ideal strategies for carbon dioxide utilization and carbon recycle. The recent advances of carboxylation reaction of CO2 with various substrates (electrophiles, hydrocarbons, nucleophiles) are reviewed herein.
Contents
1 Introduction
2 Carboxylation of CO2 with various electrophiles
2.1 Carboxylation of CO2 with halogenated hydrocarbon
2.2 Carboxylation of CO2 with esters or alcohols
2.3 Carboxylation of CO2 with other electrophiles
3 Carboxylation of CO2 with diverse hydrocarbon compounds containing C—H bond
3.1 Carboxylation of CO2 with hydrocarbon containing C(sp)—H bond
3.2 Carboxylation of CO2 with hydrocarbon containing C(sp2)—H bond
3.3 Carboxylation of CO2 with hydrocarbon containing C(sp3)—H bond
4 Carboxylation of CO2 with different nucleophiles
4.1 Carboxylation of CO2 with organoboranes
4.2 Carboxylation of CO2 with organosilanes
5 Conclusion and outlook

中图分类号: 

()
[1] Dibenedetto A, Angelini A, Aresta M. Chem. Rev., 2014, 114:1709.
[2] Liu Q, Wu L P, Jackstell1 R, Beller M. Nat. Commun., 2015, 6:5933.
[3] Huang K, Sun C L, Shi Z J. Chem. Soc. Rev., 2011, 40:2435.
[4] Sekine K, Yamada T. Chem. Soc. Rev., 2016, 45:4524.
[5] Fiorani G, Guo W S, Kleij A W. Green Chem., 2015, 17:1375.
[6] Zhou H, Wang G X, Zhang W Z, Lu X B. ACS Catal., 2015, 5:6773.
[7] Stephan D W. Acc. Chem. Res., 2015, 48:306.
[8] Correa A, Martin R. J. Am. Chem. Soc., 2009, 131:15974.
[9] Fujihara T, Nogi K, Xu T H, Terao J, Tsuji Y. J. Am. Chem. Soc., 2012, 134:9106.
[10] Tran H V, Daugulis O. ACS Catal., 2013, 3:2417.
[11] Leon T, Correa A, Martin R. J. Am. Chem. Soc., 2013, 135:1221.
[12] Zhang S, Chen W Q, Yu A, He L N. ChemCatChem, 2015, 7:3972.
[13] Wang X Q, Liu Y, Martin R. J. Am. Chem. Soc., 2015, 137:6476.
[14] Moragasa T, Martin R. Synthesis, 2016, 48:A.
[15] Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc., 2016, 138:7504.
[16] Juliá-Hernández F, Moragas T, Cornella J, Martin R. Nature, 2017, 545:84.
[17] Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc., 2017, 139:9467.
[18] Meng Q Y, Wang S, Kçnig B. Angew. Chem. Int. Ed., 2017, 56:13426.
[19] Wang X Q, Liu Y, Martin R. J. Am. Chem. Soc., 2015, 137:6476.
[20] Higuchi Y, Mita T, Sato Y. Org. Lett., 2017, 19:2710.
[21] Nogi K, Fujihara T, Terao J, Tsuji Y. Chem. Commun., 2014, 50:13052.
[22] Correa A, Leon T, Martin R. J. Am. Chem. Soc., 2014, 136:1062.
[23] Moragas T, Cornella J, Martin R. J. Am. Chem. Soc., 2014, 136:17702.
[24] Nogi K, Fujihara T, Terao J, Tsuji Y. J. Org. Chem., 2015, 80:11618.
[25] Rebih F, Andreini M, Moncomble A, Harrison-Marchand A, Maddaluno J, Durandetti M. Chem. Eur. J., 2016, 22:3758.
[26] Mita T, Higuchi Y, Sato Y. Chem. Eur. J., 2015, 21:16391.
[27] Gemmeren M V, Bçrjesson M, Tortajada A, Sun S Z, Okura K, Martin R. Angew. Chem. Int. Ed., 2017, 56:6558.
[28] Chen Y G, Shuai B, Ma C, Zhang X J, Fang P, Mei T S. Org. Lett., 2017, 19:2969.
[29] Sun S, Yu J T, Jiang Y, Cheng J. Adv. Synth. Catal., 2015, 357:2022.
[30] Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed., 2016, 55:5053.
[31] Yu D Y, Zhang Y G. Green Chem., 2011, 13:1275.
[32] Yu D Y, Tan M X, Zhang Y G. Adv. Synth. Catal., 2012, 354:969.
[33] Zhang X, Zhang W Z, Ren X, Zhang L L, Lu X B. Org. Lett., 2011, 13:2402.
[34] Arndt M, Risto E, Krause T, Gooßen L J. ChemCatChem, 2012, 4:484.
[35] Guo C X, Yu B, Xie J N, He L N. Green Chem., 2015, 17:474.
[36] Wu Z L, Sun L, Liu Q G, Yang X F, Ye X, Hu Y C, Huang Y Q. Green Chem., 2017, 19:2080.
[37] Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo Y. Org. Biomol. Chem., 2012, 10:1514.
[38] Schreiner E, Braun S, Kwasnitschka C, Frank W, Müller T J J. Adv. Synth. Catal., 2014, 356:3135.
[39] Xie J N, Yu B, Guo X C, He L N. Green Chem., 2015, 17:4061.
[40] Wu F S, Tong W, Liang Y, Wang H S, Teng Q H, Pan Y M. RSC Adv., 2016, 6:63855.
[41] Wang X, Lim Y N, Lee C, Jang H Y, Lee B Y. Eur. J. Org. Chem., 2013,10:1867.
[42] Kuge K, Luo Y, Fujita Y, Mori Y, Onodera G, Kimura M. Org. Lett., 2017, 19:854.
[43] Lejkowski M L, Lindner R, Kageyama T, Bódizs G É, Plessow P N, Müller I B, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk S A, Limbach M. Chem. Eur. J., 2012, 18:14017.
[44] Huguet N, Jevtovikj I, Gordillo A, Lejkowski M L, Lindner R, Bru M, Khalimon A Y, Rominger F, Schunk S A, Hofmann P, Limbach M. Chem. Eur. J., 2014, 20:16858.
[45] Manzini S, Huguet N, Trapp O, Schaub T. Eur. J. Org. Chem., 2015, 32:7122.
[46] Mizuno H, Takaya J, Iwasawa N. J. Am. Chem. Soc., 2011, 133:1251.
[47] Sasano K, Takaya J, Iwasawa N. J. Am. Chem. Soc., 2013, 135:10954.
[48] Ueno A, Takimoto M, O N W, Nishiura M, Ikariya T, Hou Z M. Chem. Asian J., 2015, 10:1010.
[49] Luo J F, Preciado S, Xie P, Larrosa I. Chem. Eur. J., 2016, 22:6798.
[50] Zhang L, Cheng J H, Ohishi T, Hou Z M. Angew. Chem. Int. Ed., 2010, 49:8670.
[51] Boogaerts I I F, Fortman G C, Furst M R L, Cazin C S J, Nolan S P. Angew. Chem. Int. Ed., 2010, 49:8674.
[52] Inomata H, Ogata K, Fukuzawa S I, Hou Z M. Org. Lett., 2012, 14:3986.
[53] Yoo W J, Capdevila M G, Du X W, Kobayashi S. Org. Lett., 2012, 14:5326.
[54] Xin Z, Lescot C, Friis S D, Daasbjerg K, Skrydstrup T. Angew. Chem., 2015, 127:6966.
[55] Zhang Z, Ju T, Ye J H, Yu D G.Synlett., 2017, 28:741.
[56] Zhang Z, Liao L L, Yan S S, Wang L, He Y Q, Ye J H, Li J, Zhi Y G, Yu D G. Angew. Chem. Int. Ed., 2016, 55:7068.
[57] Zhang Z, Ju T, Miao M, Han J L, Zhang Y H, Zhu X Y, Ye J H, Yu D G, Zhi Y G. Org. Lett., 2017, 19:396.
[58] Liu Q Y, Li M, Xiong R, Mo F Y. Org. Lett., 2017, 19:6756.
[59] Mita T, Michigami K, Sato Y. Org. Lett., 2012, 14:3462.
[60] Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc., 2015, 137:14063.
[61] Ishida N, Masuda Y, Uemoto S, Murakami M. Chem. Eur. J., 2016, 22:6524.
[62] Michigami K, Mita T S, Sato Y. J. Am. Chem. Soc., 2017, 139:6094.
[63] Guo C X, Zhang W Z, Zhou H, Zhang N, Lu X B. Chem. Eur. J., 2016, 22:17156.
[64] Zhang W Z, Yang M W, Lu X B. Green Chem., 2016, 18:4181.
[65] Grigg R D, Rigoli J W, Hoveln R V, Neale S, Schomaker J M. Chem. Eur. J., 2012, 18:9391.
[66] Ohishi T, Nishiura M, Hou Z M. Angew. Chem., 2008, 120:5876.
[67] Ohishi T, Zhang L, Nishiura M, Hou Z M. Angew. Chem. Int. Ed., 2011, 50:8114.
[68] Ohmiya H, Tanabe M, Sawamura M. Org. Lett., 2011, 13:1086.
[69] Juhl M, Laursen S L R, Huang Y X, Nielsen D U, Daasbjerg K, Skrydstrup T. ACS Catal., 2017, 7:1392.
[70] Zhang X, Zhang W Z, Shi L L, Guo C X, Zhang L L, Lu X B. Chem. Commun., 2012, 48:6292.
[71] Makida Y, Marelli E, Slawina A M Z, Nolan S P. Chem. Commun., 2014, 50:8010.
[72] Duong H A, Huleatt P B, Tan Q W, Shuying E L. Org. Lett., 2013, 15:4034.
[73] Yonemoto-Kobayashi M, Inamoto K, Tanaka Y, Kondo Y. Org. Biomol. Chem., 2013, 11:3773.
[74] Sekine K, Sadamitsu Y, Yamada T. Org. Lett., 2015, 17:5706.
[75] Frogneux X, Wolff N V, Thuéry P, Lefévre G, Cantat T. Chem. Eur. J., 2016, 22:2930.
[76] Mita T, Chen J Y, Sugawara M, Sato Y. Org. Lett., 2012, 14:6202.
[77] Mita T, Higuchi Y, Sato Y. Org. Lett., 2014, 16:14.
[78] Mita T, Sugawara M, Saito K, Sato Y. Org. Lett., 2014, 16:3028.
[79] Mita T, Sugawara M, Sato Y. J. Org. Chem., 2016, 81:5236.
[80] Fukushima H, Ohshita J, Yoshida H, Kunai A. J. Am. Chem. Soc., 2006, 128:11040.
[81] Morishita T, Ohshita J, Yoshida H. Org. Lett., 2008, 10:3845.
[82] Kaicharla T, Thangaraj, Biju A T. Org. Lett., 2014, 16:1728.
[83] Bhojgude S S, Roy T, Gonnade R G, Biju A T. Org. Lett., 2016, 18:5424.
[84] Yoo W J, Nguyen Q T V, Kobayashi S. Angew. Chem. Int. Ed., 2014, 53:10213.
[85] Nguyen T V Q, Rodríguez-Santamaría J A, Yoo W J, Kobayashi S. Green Chem., 2017, 19:2501.
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[8] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[9] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[10] 杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚. 二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理[J]. 化学进展, 2019, 31(2/3): 245-257.
[11] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[12] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[13] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.
[14] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.
[15] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
阅读次数
全文


摘要

CO2:羧基化反应的C1合成子