English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 513-527 DOI: 10.7536/PC171237 前一篇   后一篇

• 综述 •

三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化

杨琪1, 欧阳昆冰2*, 刘亮1, 席振峰1*   

  1. 1. 北京大学化学学院 北京分子科学国家研究中心 北京 100871;
    2. 湘潭大学化学学院 绿色有机合成与应用湖南省重点实验室 环境友好化学与应用教育部重点实验室 湘潭 411105
  • 收稿日期:2017-12-25 修回日期:2018-01-15 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 欧阳昆冰,e-mail:kbouyang@xtu.edu.cn;席振峰,e-mail:zfxi@pku.edu.cn E-mail:kbouyang@xtu.edu.cn;zfxi@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21690061)资助

Me3Si(TMS) Chemistry: Transition-Metal Catalyzed Activation and Utilization of C(sp3)-Si Bond

Qi Yang1, Kunbing Ouyang2*, Liang Liu1, Zhenfeng Xi1*   

  1. 1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China;
    2. Hunan Province Key Laboratory of Green Organic Synthesis and Application, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
  • Received:2017-12-25 Revised:2018-01-15 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21690061).
三甲基硅基(TMS)广泛存在于有机化合物中,并且在有机合成中有重要的应用。硅杂环化合物因其独特的理化性质而被广泛地应用于有机合成化学、材料化学和药物化学中。因此,将含有TMS基团的化合物直接用于硅杂环化合物合成的研究具有重要的意义。在有机合成化学中,碳硅键的切断是一个非常重要的过程。通过化学计量的有机镁或有机锂等有机金属试剂对C(sp3)—Si键进行切断是碳硅键活化的经典方法,然而该方法的反应条件苛刻,应用有限。过渡金属催化的反应能够在较温和的条件下实现C(sp3)—Si键的切断,这为进一步官能团化C(sp3)—Si键提供了一种新方向,同时也是一种高效构建硅杂环化合物的新方法。目前过渡金属催化活化C(sp3)—Si键的研究主要集中在具有张力环或一些具有特定结构的底物中,对于催化活化惰性C(sp3)—Si键的研究仍然是一个具有挑战性的课题。本文结合本课题组的工作综述了近年来过渡金属催化的TMS中C(sp3)—Si键的方法。
The C(sp3)-Si bond in trialkylsilyl groups such as SiMe3 is among the most frequently encountered C-Si bonds, because many compounds are substituted with trialkylsilyl groups. Silacycles, particularly siloles, have been recognized and extensively studied for their potential applications in organic synthetic chemistry, material science, and medicinal chemistry. The cleavage and applications of the bond is important in organic synthetic chemistry. However, classic methods require a stoichiometric amount of either organo-magnesium or organolithium reagent. The harsh conditions in these methods do not tolerate many functional groups, thus limiting the synthetic application of these approaches. Transition-metal-catalyzed cleavage of the C(sp3)-Si bonds would be ideal for overcoming the limitation. The process not only shows a new and unique entry to functionalize the C(sp3)-Si bond, but also presents a powerful method to synthesize diverse organosilanes. Up to now, the majority of successful examples, in which the strategy of transition metal catalyzed reactions was applied into activation of C(sp3)-Si bonds, has concentrated on the strained cyclic compounds and functionalized substrates. Hence, the activation of unactivated C(sp3)-Si bonds remains a challenging issue. This review article summarizes recent reports on transition-metal-catalyzed cleavage and synthetic applications of the C(sp3)-Si bonds. In addition, the organometallic reagent-promoted cleavage of C(sp3)-Si bonds is also presented for comparison.Contents
1 Introduction
2 Organometallic reagent-promoted cleavage of C(sp3)—Si bonds
3 Transition-metal-catalyzed cleavage and synthetic applications of C(sp3)—Si bonds
3.1 Organosilicon compounds containing strong electron-withdrawing groups
3.2 Strained silacycles
3.3 Inactive C(sp3)—Si bonds
4 Conclusion

中图分类号: 

()
[1] Overman L E, Blumenkopf T A. Chem. Rev., 1986, 86:857.
[2] Panek M, Masse C E. Chem. Rev., 1995, 95:1293.
[3] Langkopf E, Schinzer D. Chem. Rev., 1995, 95:1375.
[4] Fleming I, Barbero A, Walter D. Chem. Rev., 1997, 97:2063.
[5] Lukevics E, Germane S, Segal I, Zablotskaya A. Chem. Heterocycl. Compd., 1997, 33:234.
[6] Sieburth S M N, Nittoli T, Mutahi A M, Guo L X. Angew. Chem. Int. Ed., 1998, 37:812.
[7] Tacke R, Handmann V I, Bertermann R, Burschka C, Penka M, Seyfried C. Organometallics, 2003, 22:916.
[8] Barnes M J, Conroy R, Miller D J, Mills J S, Montana J G, Pooni P K, Showell G A, Walsh L M, Warneck J B H. Bioorg. Med. Chem. Lett., 2007, 17:354.
[9] Chan J C H, Lam H M, Yam V W W. J. Am. Chem. Soc., 2014, 136:16994.
[10] Liu J H, Zhang Q D, Li P, Qu Z, Sun S H, Ma Y P, Su D Y, Zong Y L, Zhang J X. Eur. J. Inorg. Chem., 2014, 3435.
[11] Denmark S E, Sweis R F. Metal-Catalyzed Cross-Coupling Reactions. 2 nd ed. Weinheim:Wiley-VCH, 2004. 163.
[12] Jones G R, Landais Y. Tetrahedron, 1996, 52:7599.
[13] Franz A K, Woerpel K A. Acc. Chem. Res., 2000, 33:813.
[14] Rauf W, Hazari A, Gouverneur V, Brown J M. Pure Appl. Chem., 2010, 82:1415.
[15] Hiyama T. J. Syn. Org. Chem. Jpn., 2010, 68:729.
[16] Cheng C, Hartwig J F. Chem. Rev., 2015, 115:8946.
[17] Hatanaka Y, Hiyama T. J. Org. Chem., 1988, 53:918.
[18] Sonogashira K. J. Organomet. Chem., 2002, 653:46.
[19] Boxer M B, Yamamoto H. J. Am. Chem. Soc., 2006, 128:48.
[20] van Klink G P M, de Boer H J R, Schat G, Akkerman O S, Bickelhaupt F, Spek A L. Organometallics, 2002, 21:2119.
[21] Hudrlik P F, Dai D H, Hudrlik A M. J. Organomet. Chem., 2006, 691:1257.
[22] Xi Z F. Bull. Chem. Soc. Jpn., 2007, 80:1021.
[23] Wang C, Luo Q, Sun H, Guo X Y, Xi Z F. J. Am. Chem. Soc., 2007, 129:3094.
[24] Wang L L, Duan Z. Chin. Sci. Bull., 2013, 58:307.
[25] Zhang Q, An K, He W. Synlett, 2015, 26:1145.
[26] Li L J, Zhang Y B, Gao L, Song Z. Tetrahedron Lett., 2015, 56:1466.
[27] Komiyama T, Minami Y, Hiyama T. ACS Catal., 2017, 7:631.
[28] Hiyama T. In Metal-Catalyzed Cross-Coupling Reactions. Weinheim:Wiley-VCH, 1998.
[29] Hiyama T. J. Organomet. Chem., 2002, 653:58.
[30] Denmark S E, Sweiss R F. Acc. Chem. Res., 2002, 35:835.
[31] Spivey A C, Gripton C J G, Hannah J P. Curr. Org. Synth., 2004, 1:211.
[32] Denmark S E, Baird J D. Chem. Eur. J., 2006, 12:4954.
[33] Nakao Y, Imanaka H, Sahoo A K, Yada A, Hiyama T. J. Am. Chem. Soc., 2005, 127:6952.
[34] Alacid E, Nájera C. Adv. Synth. Catal., 2006, 348:2085.
[35] Yang S B, Li B J, Wan X B, Shi Z J. J. Am. Chem. Soc., 2007, 129:6066.
[36] Dai X, Strotman N A, Fu G C. J. Am. Chem. Soc., 2008, 130:3302.
[37] Zhang L, Wu J. J. Am. Chem. Soc., 2008, 130:12250.
[38] Luo Q, Wang C, Li Y, Ouyang K B, Gu L, Uchiyama M, Xi Z. Chem. Sci., 2011, 2:2271.
[39] Zhang W X, Zhang S G, Xi Z F. Acc. Chem. Res., 2011, 44:541.
[40] Zhang S, Zhang W X, Zhao J, Xi Z F. J. Am. Chem. Soc., 2010, 132:14042.
[41] Wu M J, Wei L M, Lin C F, Leou S P, Wei L L. Tetrahedron, 2001, 57:7839.
[42] Sommer W J, Weck M. Adv. Synth. Catal., 2006, 348:2101.
[43] Horita A, Tsurugi H, Satoh T, Miura M. Org. Lett., 2008, 10:1751.
[44] Huang H, Liu H, Jiang H L, Chen K X. J. Org. Chem., 2008, 73:6037.
[45] Sakai N, Komatsu R, Uchida N, Ikeda R, Konakahara T. Org. Lett., 2010, 12:1300.
[46] Wang Z H, Fang H Y, Xi Z F. Tetrahedron Lett., 2005, 46:499.
[47] Yu N, Wang C Y, Zhao F, Liu L T, Zhang W X, Xi Z F. Chem. Eur. J., 2008, 14:5670.
[48] Wang C, Luo Q, Sun H, Guo X Y, Xi Z F. J. Am. Chem. Soc., 2007, 129:3094.
[49] Hosomi A. Acc. Chem. Res., 1988, 21:200.
[50] Fleming I, Barbero A, Walter D. Chem. Rev., 1997, 97:2063.
[51] Matsuda T, Kadowaki S, Yamaguchi Y, Murakami M. Chem. Commun., 2008, 2744.
[52] Kolomeitsev A, Rusanov E, Bissky G, Lork E, Röschenthaler G V, Kirsch P. Chem. Commun., 1999, 1017.
[53] Liu X, Xu C, Wang M, Liu Q. Chem. Rev., 2015, 115:683.
[54] Franz A K, Woerpel K A. Acc. Chem. Res., 2000, 33:813.
[55] Hirano K, Yorimitsu H, Oshima K. Chem. Commun., 2008, 3234.
[56] Seiser T, Cramer N. Angew. Chem., Int. Ed., 2010, 49:10163.
[57] Matsuda T, Suda Y, Fujisaki Y. Synlett, 2011, 813.
[58] Cramer N, Seiser T. Synlett, 2011, 449.
[59] Ishida N, Ikemoto W, Murakami M. J. Am. Chem. Soc., 2014, 136:5912.
[60] 罗渝然(Luo Y R). 化学键能数据手册(The Handbook of Chemical Bond Energy). 北京:科学出版社(Beijing:Science Press), 2005.
[61] Tamao K. Proc. Jpn. Acad. Ser. B, 2008, 84:123.
[62] Prakash G K S, Krishnamurt R, Olah G A. J. Am. Chem. Soc., 1989, 111:393.
[63] Yamaguchi S K, Tamao K. Silicon Containing Polymers:The Science and Technology of Their Synthesis and Applications. Dordrecht:Kluwer Academic Publishers, 2000. 498.
[64] Yamaguchi S, Tamao K. J. Organomet. Chem., 2002, 653:223.
[65] Hissler M, Dyer P W, Réau R. Coord. Chem. Rev., 2003, 244:1.
[66] Yamaguchi S, Xu C, Okamoto T. Pure Appl. Chem., 2006, 78:721.
[67] Chen J J, Cao Y. Macromol.Rapid Commun., 2007, 28:1714.
[68] 刘俊辉(Liu J), 张文雄(Zhang W X), 席振峰(Xi Z F). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29:491.
[69] (a)张韶光(Zhang S G), 刘俊辉(Liu J H), 张文雄(Zhang W X), 席振峰(Xi Z F). 化学进展(Progress in Chemistry), 2009, 12:1487.;
(b)刘俊辉(Liu J H), 张韶光(Zhang S G), 张文雄(Zhang W X), 席振峰(Xi Z F). 化学进展(Progress in Chemistry), 2009, 12:1475.
[70] Liu J H, Sun X H, Miyazaki M, Liu L T, Wang C Y, Xi Z F. J. Org. Chem., 2007, 72:3137.
[71] Matsumoto K, Oshima K, Utimoto K. J. Syn. Org. Chem. Jpn., 1996, 54:289.
[72] Tanaka Y, Yamashita H,Shimada S,Tanaka M. Organometallics, 1997, 16:3246.
[73] Li L W, Zhang Y B, Gao L, Song Z L. Tetrahedron Lett., 2015, 56:1466.
[74] Zhang Q W, An K, Liu L G, Zhang Q, Guo H F, He W. Angew. Chem. Int. Ed., 2017, 56:1125.
[75] Cheng C, Hartwig J F. J. Am. Chem. Soc., 2014, 136:12064.
[76] Rauf W, Brown M. Angew. Chem. Int. Ed., 2008, 47:4228.
[77] Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew. Chem. Int. Ed., 2010, 49:4447.
[78] Liang Y, Zhang S G, Xi Z F. J. Am. Chem. Soc., 2011, 133:9204.
[79] Zask A, Helquist P. J. Org. Chem., 1978, 43:1619.
[80] Viciu M S, Grasa G A, Nolan S P. Organometallics, 2001, 20:3607.
[81] Navarro O, Kaur H, Mahjoor P, Nolan S P. J. Org. Chem., 2004, 69:3173.
[82] Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2002, 102:4009.
[83] Moon J J, Lee S W. J. Organomet. Chem., 2009, 694:473.
[84] Liang Y, Geng W J, Wei J N, Xi Z F. Angew. Chem. Int. Ed., 2012, 51:1934.
[85] Chen W T, Lin Z Y. Dalton Trans., 2014, 43:11138.
[86] Tadross P M, Stoltz B M. Chem. Rev., 2012, 112:3550.
[87] Bhunia A, Yetra S R, Biju A T. Chem. Soc. Rev., 2012, 41:3140.
[88] Parthasarathy K, Han H, Prakash C, Cheng C H. Chem. Commun., 2012, 48:6580.
[89] Meng T H, Ouyang K B, Xi Z F. RSC Adv., 2013, 3:14273.
[90] Tobisu M, Onoe M, Kita Y, Chatani N. J. Am.Chem. Soc., 2009, 131:7506.
[91] Onoe M, Baba K, Kim Y, Kita Y, Tobisu M, Chatani N. J. Am. Chem. Soc., 2012, 134:19477.
[92] Zhang Q W, An K, He W. Angew. Chem. Int. Ed., 2014, 53:5667.
[93] Yu Z Y, Lan Y. J. Org. Chem., 2013, 78:11501.
[94] Yang Q, Liu L, Chi Y, Hao W, Zhang W X, Xi Z F. Org. Chem. Front., 2017, 5:860.
[95] 欧阳昆冰(Ouyang K B), 席振峰(Xi Z F). 化学学报(Acta Chimica Sinica), 2013, 71:13.
[96] 杨琪(Yang Q), 刘亮(Liu L), 张文雄(Zhang W X), 席振峰(Xi Z F). 有机化学(Chinese Journal of Organic Chemistry), 2018, 38:272.
[97] Olah G A, Meyer W, Overchuk N A. J. Org. Chem., 1964, 29:2313.
[98] Olah G A, Meyer W, Overchuk N A. J. Org. Chem., 1964, 29:2315.
[99] Dudnik A S, Xia Y Z, Li Y H, Gevorgyan V. J. Am. Chem. Soc., 2010, 132:764.
[100] Chen M, Sun N, Xu W, Zhao J D, Wang G N, Liu Y H. Chem. Eur. J., 2015, 21:18571.
[101] Yu M M, Fu X F. J. Am. Chem. Soc., 2011, 133:15926.
[1] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[2] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[3] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.
[4] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
[5] 龚浩, 杨义文, 匡春香. 基于C—H键官能团化的药物合成[J]. 化学进展, 2014, 26(04): 592-608.
[6] 戚自松, 董亚丽, 李亚明*, 段春迎* . 过渡金属催化芳香化合物三氟甲基化反应[J]. 化学进展, 2012, 24(11): 2177-2186.
[7] 姚臻 戴斌斌 刘少杰 曹堃 傅建松 谢家明. 乙烯和降冰片烯加成共聚合催化体系*[J]. 化学进展, 2010, 22(10): 2024-2032.
[8] 陈茂 翁玥 雷爱文. 过渡金属催化的1,n-烯炔类化合物的不对称环异构化反应[J]. 化学进展, 2010, 22(07): 1341-1352.
[9] 王春翔 李新成 徐粉 万伯顺. 过渡金属催化[2 + 2 + 2]环加成反应合成吡啶衍生物[J]. 化学进展, 2010, 22(04): 610-630.
[10] 李旭琴 刘安. 无保护基法合成的启示*[J]. 化学进展, 2010, 22(01): 81-90.
[11] 吴平易,季生福,胡林华,李成岳. 介孔分子筛孔中过渡金属的组装及其催化应用*[J]. 化学进展, 2007, 19(04): 437-443.
[12] 陈立谊,杨海健,孙文华. 水相配位催化烯烃聚合的新进展*[J]. 化学进展, 2003, 15(05): 401-.