English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 976-988 DOI: 10.7536/PC171029 前一篇   后一篇

• 综述 •

b轴取向MFI型分子筛膜二次生长合成策略及其应用

倪秀秀, 丁鹤, 张景双, 曾周靓子, 白鹏, 郭翔海*   

  1. 天津大学 化工学院制药工程系 系统生物工程教育部重点实验室 天津 300350
  • 收稿日期:2017-11-01 修回日期:2018-03-05 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 郭翔海 E-mail:guoxh@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21202116)资助

Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications

Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*   

  1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
  • Received:2017-11-01 Revised:2018-03-05 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21202116).
b轴取向MFI型分子筛膜因其在膜分离、膜催化反应器研究领域的重要应用引起了广泛关注。本文综述了二次生长法合成b轴MFI型分子筛膜的最新研究进展,从晶种的合成、晶种涂覆方式以及二次生长溶液的组成等方面详细总结了调控b取向MFI型分子筛膜合成的方法;比较了不同分子筛膜合成策略的优缺点,及这些合成策略对不同体系的分离效果(分离因子与通量)和催化性能的影响。本文还介绍了近年来二维(2D)分子筛和分子筛纳米片的监测与生长控制方法,自下而上直接合成纳米片与高通量、高选择性分子筛膜合成方面的最新突破。通过深入探讨各种分子筛膜制备策略,对b轴取向分子筛膜制备的发展趋势进行了展望。
Due to their great potential in membrane separation and catalytic membrane reactors, considerable research effort has been applied to the b-oriented MFI zeolite membrane. The latest developments of secondary growth strategies of b-oriented MFI zeolite membrane are reviewed in this paper. In particular, the effects of important factors on preparing b-oriented MFI films, such as synthesis of seeds, seed-coating methods and synthetic solution compositions, are summarized in detail. The advantages and disadvantages of these synthetic strategies, and their influences on the separation performance(separation factor and permeance) and catalytic performance of synthesized MFI zeolite membranes are evaluated. This review also introduces the latest breakthroughs in monitoring and controlling growth of two-dimensional(2D) zeolite crystal, and bottom-up syntheses of membranes with ultra high selectivity and flux from zeolite nanosheets produced in situ. Based on the extensive discussion of various preparation strategies, the developing trends in the preparation of b-oriented MFI zeolite membrane are forecasted.
Contents
1 Introduction
2 Progress in synthesis of zeolite seeds
3 Progress in coating methods
3.1 Manual assembly
3.2 Air-water interfacial assembly
3.3 Other coating methods
4 Progress in secondary growth
4.1 Prevention of the attachment between seeds and (0k0) face
4.2 Change of mineralizing agents
4.3 Improvement of secondary growth synthesis solution composition
4.4 Ultra-selective ultra-flux zeolite membrane
5 Conclusion and outlook

中图分类号: 

()
[1] Flanigen E M, Bennett J M, Grose R W, Cohen J P, Patton R L, Kirchner R M, Smith J V. Nature, 1978, 271(5645):512.
[2] Kokotailo G T, Lawton S L, Olson D H, Meier W M. Nature, 1978, 272(5652):437.
[3] Corma A. Cheminform, 1995, 26(37):559.
[4] Davis M E. Nature, 2002, 417(6891):813.
[5] Cundy C S, Cox P A. Chem. Rev., 2003, 103(3):663.
[6] Tsapatsis M. AlChE J., 2014, 60(7):2374.
[7] Lin Y S, Kumakiri I, Nair B N, Alsyouri H. Sep. Purif. Methods, 2002, 31(2):229.
[8] Gouzinis A, Tsapatsis M. Chem. Mater., 1998, 10(9):2497.
[9] Zhang X F, Liu H O, Yeung K L. Materials Chemistry & Physics, 2006, 96(1):42.
[10] Agrawal K V, Topuz B, Pham T C, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Adv. Mater., 2015, 27(21):3243.
[11] Pham T C, Nguyen T H, Yoon K B. Angew. Chem. Int. Ed. Engl., 2013, 52(33):8693.
[12] Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J. Angew. Chem. Int. Ed. Engl., 2014, 53(13):3492.
[13] Gora L, Kuhn J, Baimpos T, Nikolakis V, Kapteijn F, Serwicka E M. Analyst, 2009, 134(10):2118.
[14] Fu D L, Schmidt J E, Ristanovic Z, Chowdhury A D, Meirer F, Weckhuysen B M. Angew. Chem. Int. Ed. Engl., 2017, 56(37):11217.
[15] Snyder M A, Tsapatsis M. Angew. Chem., 2007, 46(40):7560.
[16] Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Chem. Soc. Rev., 2015, 44(20):7128.
[17] Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. Cheminform, 2012, 43(40):2829.
[18] 彭勇(Peng Y), 王正宝(Wang Z B). 化学进展(Progress in Chemistry), 2013, 25(12):2178.
[19] 郎林(Lang L), 张超(Zhang C), 阴秀丽(Yin X L), 吴创之(Wu C Z). 化学进展(Progress in Chemistry), 2011, 23(5):1022.
[20] Xia S X, Peng Y, Wang Z. J. Membr. Sci., 2016, 498:324.
[21] Shu X J, Wang X R, Kong Q Q, Gu X H, Xu N P. Industrial & Engineering Chemistry Research, 2012, 51(37):12073.
[22] Chaikittisilp W, Suzuki Y, Mukti R R, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. Angew. Chem. Int. Ed. Engl., 2013, 52(12):3355.
[23] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Cheminform, 2009, 461(7261):246.
[24] Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W, Cho H J, Fetisov E O, Thyagarajan R, DeJaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Nature, 2017, 543(7647):690.
[25] Zhang X Y, Tsapatsis M. Science, 2012, 336(6089):1684.
[26] Zhang F Z, Masayoshi F, Takahashi M. Chem. Mater., 2005, 17(5):1167
[27] Mabande GTP, Ghosh S, Lai Z P, Schwieger W, Tsapatsis M. Ind. Eng. Chem. Res., 2007, 44(24):9086.
[28] Deng Z Y, Pera-Titus M. Mater. Res. Bull., 2013, 48(5):1874.
[29] Di J C, Zhang C, Yan W F, Wang X F, Yu J H, Xu R R. Microporous Mesoporous Mater., 2011, 145(1/3):104.
[30] Ji M L, Liu G Z, Chen C, Wang L, Zhang X W. Microporous Mesoporous Mater., 2012, 155:117.
[31] Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Angew. Chem. Int. Ed. Engl., 2007, 46(17):3087.
[32] Yoon K B. Acc. Chem. Res., 2007, 38(19):29.
[33] Pham T C T, Yoon K B. Science, 2011, 334(6062):1533.
[34] Zhou M, Liu X F, Zhang B Q, Zhu H M. Langmuir, 2008, 24(20):11942.
[35] Chan R Y. Chem. Lett. 2016, 45:1057.
[36] Sandström L, Sjöberg E, Hedlund J. J. Membr. Sci., 2011, 380(1/2):232.
[37] Zhou H, Korelskiy D, Leppäjärvi T, Grahn M, Tanskanen J, Hedlund J. J. Membr. Sci., 2012, 399:106.
[38] Zhou M, Hedlund J. J. Mater. Chem., 2012, 22(47):24877.
[39] Peng Y, Zhan Z Y, Shan L J, Li X M, Wang Z B, Yan Y S. J. Membr. Sci., 2013, 444:60.
[40] Topuz B, Önder A, Bowen T C, Kalipcilar H. Chem. Eng. Res. Des., 2017, 117:746.
[41] Tiriolo R, Rangnekar N, Zhang H, Shete M, Bai P, Nelson J, Karapetrova E, Macosko C W, Siepmann J I, Lamanna E. Adv. Funct. Mater., 2017, 27(25):1700864.
[42] Niu Z W, He J B, Russell T P, Wang Q. Angew. Chem. Int. Ed. Engl., 2010, 49(52):10052.
[43] Krishnaswamy R, Sood A K. J. Mater. Chem., 2010, 20(18):3539.
[44] Park J S, Jeong N C, Lee Y J, Kim M J, Yoon K B. Journal of Nanoscience and Nanotechnology, 2010, 10(1):370.
[45] Wang Z, Yu T, Nian P, Zhang Q C, Yao J K, Li S, Gao Z N, Yue X L. Langmuir, 2014, 30(16):4531.
[46] Nian P, Su M H, Yu T, Wang Z, Zhang B X, Shao X L, Jin X Y, Jiang N Z, Li S, Ma Q. J. Mater. Sci., 2016, 51(6):3257.
[47] Liu Y, Li Y S, Yang W S. J. Am. Chem. Soc., 2010, 132(6):1768.
[48] Shete M, Kumar M, Kim D, Rangnekar N, Xu D, Topuz B, Agrawal K V, Karapetrova E, Stottrup B, Al-Thabaiti S. Angew. Chem., 2017, 56(2):535.
[49] Zhou M, Hedlund J. J. Mater. Chem., 2012, 22(8):3307.
[50] Hye Jin J, Ji Hong L, Rodney S R, Hyunseob L, Seong In Y, Hu Young J, Tae Joo S, Christopher W B, Hyeon Suk S. 2D Mater., 2017, 4(1):014005.
[51] Azad I, Ram M K, Goswami D Y, Stefanakos E. Langmuir, 2016, 32(33):8307.
[52] Benito J, Sorribas S, Lucas I, Coronas J, Gascon I. ACS Appl. Mater. Interfaces, 2016, 8(25):16486.
[53] Rangnekar N, Shete M, Agrawal K V, Topuz B, Kumar P, Guo Q, Ismail I, Alyoubi A, Basahel S, Narasimharao K, Macosko C W, Mkhoyan K A, Al-Thabaiti S, Stottrup B, Tsapatsis M. Angew. Chem. Int. Ed. Engl., 2015, 54(22):6571.
[54] Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Dispersible Exfoliated Zeolite Nanosheets and Their Application as A Selective Membrane. Minneapolis:AIChE Meeting, 2011.
[55] Agrawal K V, Topuz B, Jiang Z Y, Nguenkam K, Elyassi B, Francis L F, Tsapatsis M, Navarro M. AlChE J., 2013, 59(9):3458.
[56] Kosinov N, Hensen E J M. J. Membr. Sci., 2013, 447:12.
[57] Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N. Angew. Chem., 2016, 55(25):7184.
[58] Woerdemann M, Glasener S, Horner F, Devaux A, De Cola L, Denz C. Adv. Mater., 2010, 22(37):4176.
[59] Woerdemann M, Alpmann C, Hörner F, Devaux A, Cola L D, Denz C. Optical control and dynamic patterning of zeolites(Eds. Dholakia K, Spalding G C). San Diego:SPIE NanoScience + Engineering, 2010. 7762.
[60] Li S, Demmelmaier C, Itkis M, Liu Z M, Haddon R C, Yan Y S. Chem. Mater., 2003, 15(14):2687.
[61] Lee I, Buday J L, Jeong H K. Microporous Mesoporous Mater., 2009, 122(1/3):288.
[62] Bellussi G, Carati A, Rizzo C, Millini R. Catal. Sci. Technol., 2013, 3(4):833.
[63] Zhang K, Lively R P, Noel J D, Dose M E, McCool B A, Chance R R, Koros W J. Langmuir, 2012, 28(23):8664.
[64] Gualtieri M L. Microporous Mesoporous Mater., 2009, 117(1):508.
[65] Zhou H, Korelskiy D, Sjöberg E, Hedlund J. Microporous Mesoporous Mater., 2014, 192:76.
[66] Korelskiy D, Grahn M, Ye P C, Zhou M, Hedlund J. RSC Adv., 2016, 6(70):65475.
[67] Peng Y, Lu X F, Wang Z B, Yan Y S. Angew. Chem. Int. Ed., 2015, 54(19):5709.
[68] Liu X L, Ravon U, Tuel A. Angew. Chem. Int. Ed. Engl., 2011, 50(26):5900.
[69] Caro J, Noack M. Advances in Nanoporous Materials. Amsterdam:Elsevier, 2010. 1.
[70] Lu X F, Peng Y, Wang Z B, Yan Y S. Chem. Commun., 2015, 51(55):11076.
[71] Lai Z P, Bonilla G, Diaz I, Nery J G, Sujaoti K, Amat M A, Kokkoli E, Terasaki O, Thompson R W, Tsapatsis M. Science, 2003, 300(5618):456.
[72] Li S, Wang X, Beving D, Chen Z W. J. Am.Chem.Soc., 2004, 126(13):4122.
[73] Li X M, Peng Y, Wang Z B, Yan Y S. CrystEngComm, 2011, 13(11):3657.
[74] Liu Y, Li Y S, Cai R, Yang W S. J. Mater. Chem. A, 2012, 2:16093.
[75] Peng Y, Lu H B, Wang Z B, Yan Y S. Chem. Commun., 2014, 48(54):6782.
[76] Dong J H, Lin Y S, Hu M Z C, Peascoe R A, Payzant E A. Microporous Mesoporous Mater., 2000, 34(3):241.
[77] Lu X F, Peng Y, Wang Z B, Yan Y S. Microporous Mesoporous Mater., 2016, 230:49.
[78] Elyassi B, Jeon M Y, Tsapatsis M, Narasimharao K, Basahel S N, Al-Thabaiti S. AlChE J., 2016, 62(2):556.
[79] Kita T, Nishimoto S, Matsuda M, Miyake M. J. Am. Ceram. Soc., 2009, 92(12):3074.
[80] Grahn M, Lobanova A, Holmgren A, Hedlund J. Chem. Mater., 2016, 20(19):6270.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.