English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 87-100 DOI: 10.7536/PC170816 前一篇   后一篇

• 综述 •

多功能超润湿材料的设计制备与应用

詹晓力, 金碧玉, 张庆华*, 陈丰秋   

  1. 浙江省化工高效制造技术重点实验室 浙江大学化学工程与生物工程学院 杭州 310027
  • 收稿日期:2017-08-16 修回日期:2017-09-13 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 张庆华,e-mail:qhzhang@zju.edu.cn E-mail:qhzhang@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21476195,21576236,21676248,21776249)资助

Design and Applications of Multifunctional Super-Wetting Materials

Xiaoli Zhan, Biyu Jin, Qinghua Zhang*, Fengqiu Chen   

  1. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2017-08-16 Revised:2017-09-13 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476195, 21576236, 21676248, 21776249).
仿生超润湿材料是指类似自然界中生命体具有的特殊浸润界面性质的一类材料。近20年来,研究人员通过模仿自然,揭示了一系列超润湿界面材料的构建机理,设计制备了多种仿生超润湿材料,并将这些具有特殊表面浸润性能的材料拓展应用到了国防、军工、航空航天、建筑、农业、医疗、海洋防污等众多领域。本文首先介绍表面润湿现象的基础理论,接着从仿生的角度出发,介绍了以仿荷叶、鱼鳞、沙漠甲虫、猪笼草为代表的几种拥有不同表面浸润性能的材料,并总结了这几种材料的仿生设计原理、结构与性能的关系以及所面临的问题。综述了近年来仿生超润湿材料在防污抗菌、防雾防霜防覆冰、油水分离等方面的应用进展,最后展望了仿生超润湿材料的发展方向。
Biomimetic super-wetting materials refer to a kind of materials which are similar to organism interfaces with special wettability in nature. In recent twenty years, a series of biomimetic super-wetting materials have been designed by researchers contributed to massive researches which are imitating organism in nature. These materials are demonstrated to possess applications in numerous application fields such as national defense, military project, aerospace, construction industry, agriculture, medical and marine antifouling. More importantly, plentiful construction mechanisms and systematic principles of biomimetic super-wetting materials have been revealed and presented by researchers which significantly promote the development of them. In this review, basic theories and influence factors of surface wetting phenomena of solid surfaces are introduced firstly. Secondly, several surfaces with different wettability represented by mimicking lotus leaf, fish scale, desert beetles and nepenthes pitcher plant materials are described from the view of biomimic. Furthermore, the bionic design principles, relationship between structure and properties and the current challenges of these materials are summarized. In addition, the recent developments of biomimetic super-wetting materials which are capable of meeting needs in anti-fouling, anti-bacterial, anti-fogging, anti-frosting, anti-icing and oil-water separation, etc. are reviewed. Finally, the prospective tendency of biomimetic super-wetting materials is proposed based on the challenges.
Contents
1 Introduction
2 Surface wetting phenomena and influencing factors
3 Different biomimetic super-wetting surfaces and preparation
3.1 Superhydrophobic
3.2 Superhydrophilic
3.3 Amphiphilic
3.4 SLIPS
4 Applications of super-wetting materials
4.1 Anti-fouling and anti-bacterial
4.2 Anti-fogging, anti-frosting and anti-icing
4.3 Oil-water separation
4.4 Others
5 Conclusion

中图分类号: 

()
[1] 王鹏伟(Wang P W), 刘明杰(Liu M J), 江雷(Jiang L). 物理学报(Acta Physica Sinica), 2016, 65:61.
[2] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Advanced Materials, 2002, 14:1857.
[3] Liu M, Wang S, Wei Z, Song Y, Jiang L. Advanced Materials, 2009, 21:665.
[4] Parker A R, Lawrence C R. Nature, 2001, 414:33.
[5] Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477:443.
[6] Su B, Guo W, Jiang L. Small, 2015, 11:1072.
[7] 韦存茜(Wei C Q). 浙江大学硕士毕业论文(Master Dissertation of Zhejiang University), 2017.
[8] 付昱晨(Fu Y C). 浙江大学硕士毕业论文(Master Dissertation of Zhejiang University), 2017.
[9] Su B, Tian Y, Jiang L. Journal of the American Chemical Society, 2016, 138:1727.
[10] Samaha M, Gad-El-Hak M. Polymers, 2014, 6:1266.
[11] Lejars M, Margaillan A, Bressy C. Chemical Reviews, 2012, 112:4347.
[12] 天津大学物理化学教研室(Tianjin University Physical Chemistry Teaching and Research Office)编,王正烈(Wang Z L), 周亚平(Zhou Y P), 李松林(Li S L), 刘俊吉(Liu J J)修订. 物理化学下册第四版(Physical Chemistry(Forth Edition)). 北京:高等教育出版社(Beijing:Higher Education Press), 2001. 12.
[13] Young T. Philosophical Transactions of the Royal Society of London, 1805, 95:65.
[14] Tian Y, Jiang L. Nature Materials, 2013, 12:291.
[15] Vogler E A. Advances in Colloid and Interface Science, 1998, 74:69.
[16] Wenzel R N. Industrial and Engineering Chemistry, 1936, 28:988.
[17] Cassie A, Baxter S. Transactions of the Faraday Society, 1944, 40:546.
[18] Bico J, Thiele U, Quere D. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 206:41.
[19] Marmur A. Langmuir, 2004, 20:3517.
[20] Rios P F, Dodiuk H, Kenig S, McCarthy S, Dotan A. Journal of Adhesion Science and Technology, 2006, 20:563.
[21] 阎映弟(Yan Y D). 浙江大学硕士毕业论文(Master Dissertation of Zhejiang University), 2014.
[22] Verho T, Korhonen J T, Sainiemi L, Jokinen V, Bower C, Franze K, Franssila S, Andrew P, Ikkala O, Ras R H A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:10210.
[23] Yu S, Guo Z, Liu W. Chemical Communication, 2015, 51:1775.
[24] Lv J, Song Y, Jiang L, Wang J. ACS Nano, 2014, 8:3152.
[25] Xue C, Guo X, Zhang M, Ma J, Jia S. Journal of Materials Chemistry A, 2015, 3:21797.
[26] Wang Y, Shi Y, Pan L, Yang M, Peng L, Zong S, Shi Y, Yu G. Nano Letters, 2014, 14:4803.
[27] Li X, Reinhoudt D, Crego-Calama M. Chemical Society Reviews, 2007, 36:1350.
[28] Gao X, Jiang L. Nature, 2004, 432:36.
[29] Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24:4114.
[30] Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L. Advanced Materials, 2007, 19:2213.
[31] Jin M, Feng X, Feng L, Sun T, Li T, Jiang L. Advanced Materials, 2005, 17:1977.
[32] Zheng Y, Gao X, Jiang L. Soft Matter, 2007, 3:178.
[33] Yang S, Ju J, Qiu Y, He Y, Wang X, Dou S, Liu K, Jiang L. Small, 2014, 10:294.
[34] Wang S, Liu K, Yao X, Jiang L. Chemical Reviews, 2015, 115:8230.
[35] Liu Y, Chen X, Xin J H. Journal of Materials Chemistry, 2009, 19:5602.
[36] Mazumder S, Falkinham J R, Dietrich A M, Puri I K. Biofouling, 2010, 26:333.
[37] Fujishima A, Zhang X, Tryk D A. Surface Science Reports, 2008, 63:515.
[38] Su B, Wang S, Song Y, Jiang L. Soft Matter, 2011, 7:5144.
[39] 杨卧龙(Yang W L), 纪献兵(Ji X B), 徐进良(Xu J L). 化学进展(Progress in Chemistry), 2016, 28:763.
[40] Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. Journal of Materials Chemistry A, 2014, 2:10225.
[41] Li J, Yan L, Li H, Li W, Zha F, Lei Z. Journal of Materials Chemistry A, 2015, 3:14698.
[42] Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S. Chemical Engineering Journal, 2016, 301:249.
[43] Gao X, Xu L P, Xue Z, Feng L, Peng J, Wen Y, Wang S, Zhang X. Advanced Materials, 2014, 26:1771.
[44] Wang B, Zhang Y, Liang W, Wang G, Guo Z, Liu W. Journal of Materials Chemistry A, 2014, 2:7845.
[45] Thickett S C, Neto C, Harris A T. Advanced Materials, 2011, 23:3718.
[46] Rgaard T N, Dacke M. Frontiers in Zoology, 2010, 7:23.
[47] Choo S, Choi H J, Lee H. Applied Surface Science, 2015, 324:563.
[48] Ju J, Xiao K, Yao X, Bai H, Jiang L. Advanced Materials, 2013, 25:5937.
[49] 张广法(Zhang G F). 浙江大学博士毕业论文(Doctoral Dissertation of Zhejiang University), 2016.
[50] Howarter J A, Youngblood J P. Journal of Colloid and Interface Science, 2009, 329:127.
[51] Zhu X Y, Loo H E, Bai R B. Journal of Membrane Science, 2013, 436:47.
[52] Zhao X T, Chen W J, Su Y L, Zhu W, Peng J M, Jiang Z Y, Kong L, Li Y F, Liu J Z. Journal of Membrane Science, 2013, 441:93.
[53] Lin N, Yang H, Chang Y, Tung K, Chen W, Cheng H, Hsiao S, Aimar P, Yamamoto K, Lai J. Langmuir, 2012, 29:10183.
[54] Zhu L, Xu L, Zhu B, Feng Y, Xu Y. Journal of Membrane Science, 2007, 294:196.
[55] Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Nature communication, 2013, 4:2167.
[56] Yao X, Dunn S S, Kim P, Duffy M, Alvarenga J, Aizenberg J. Angewandte Chemie International Edition, 2014, 53:4418.
[57] Kim P, Wong T S, Alvarenga J, Kreder M J, Adornomartinez W E, Aizenberg J. ACS Nano, 2012, 6:6569.
[58] Manabe K, Kyung K, Shiratori S. ACS Applied Materials & Interfaces, 2015, 7:4763.
[59] Doll K, Fadeeva E, Schaeske J, Ehmke T, Winkel A, Heisterkamp A, Chichkov B N, Stiesch M, Stumpp N S. ACS Applied Materials & Interfaces, 2017, 9:9359.
[60] Shillingford C, Maccallum N, Wong T S, Kim P, Aizenberg J. Nanotechnology, 2014, 25:014019.
[61] Sunny S, Vogel N, Howell C, Vu T L, Aizenberg J. Advanced Functional Materials, 2014, 24:6658.
[62] Miranda D F, Urata C, Masheder B, Dunderdale G J, Yagihashi M. APL Materials, 2014, 2(5):056108.
[63] Smith J, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, McKinley G H, Varanasi K K. Soft Matter, 2013, 9:1772.
[64] Urata C, Dunderdale G J, England M W, Hozumi A. Journal of Materials Chemistry A, 2015, 3:12626.
[65] Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q. ACS Applied Materials & Interfaces, 2013, 5:4053.
[66] Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Applied Materials & Interfaces, 2014, 6:13299.
[67] 韦存茜(Wei C Q), 严杰(Yan J), 唐浩(Tang H), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q). 化学进展(Progress in Chemistry), 2016, 28:9.
[68] Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30:10970.
[69] Eifert A, Paulssen D, Varanakkottu S N, Baier T, Hardt S. Advanced Materials Interfaces, 2014, 1:1300138.
[70] Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R T E, Mckinley G H, Varanasi K K. Soft Mater, 2013, 9:1772.
[71] Lee C, Kim H, Nam Y. Langmuir, 2014, 30:8400.
[72] Carlson A, Kim P, Amberg G, Stone H A. Europhysics Letters, 2013, 104:34008.
[73] Zhang J, Wang A, Seeger S. Advanced Functional Materials, 2014, 24:1074.
[74] Manna U, Lynn D M. Advanced Materials, 2015, 27:3007.
[75] Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. Journal of Colloid and Interface Science, 2015, 444:81.
[76] Wang Q, Zhang Q, Zhan X, Chen F. Journal of Polymer Science Part A-Polymer Chemistry, 2010, 48:2584.
[77] Zhang Q, Wang Q, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2014, 53:8026.
[78] 王琼燕(Wang Q Y). 浙江大学博士毕业论文(Doctoral Dissertation of Zhejiang University), 2010.
[79] Zhang Q, Wang Q, Jiang J, Zhan X, Chen F. Langmuir, 2015, 31:4752.
[80] Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. ACS Applied Materials & Interfaces, 2016, 8:10513.
[81] Qian T, Wang J, Cheng T, Zhan X, Zhang Q, Chen F. Journal of Polymer Science Part A-Polymer Chemistry, 2016, 54(13):2040.
[82] 钱涛(Qian T), 汪涓涓(Wang J J), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q). 高分子学报(Acta Polymerica Sinica), 2016, 7:910.
[83] Wei C, Tang Y, Zhang G, Zhang Q, Zhan X, Chen F. RSC Advances, 2016, 6:74340.
[84] Fu Y, Jiang J, Zhang Q, Zhan X, Chen F. Journal of Materials Chemistry A, 2017, 5:275.
[85] Wei C, Zhang G, Zhang Q, Zhan X, Chen F. ACS Applied Materials & Interfaces, 2016, 8:34810.
[86] Zhang Q, Liu H, Zhan X, Chen F, Yan J, Tang H. RSC Advances, 2015, 5:77508.
[87] Zhang Q, Liu H, Chen X, Zhan X, Chen F. Journal of Applied Polymer Science, 2015, 132:41725.
[88] Chen X, Zhang G, Zhang Q, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2015, 54:3813.
[89] Zhan X, Zhang G, Chen X, He R, Zhang Q, Chen F. Industrial & Engineering Chemistry Research, 2015, 54:11312.
[90] Gao F, Zhang G, Zhang Q, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2015, 54:8789.
[91] Zhang Q, Jiang J, Gao F, Zhang G, Zhan X, Chen F. Chemical Engineering Journal, 2017, 321:412.
[92] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4:7699.
[93] Cao L, Jones A K, Sikka V K, Wu J, Gao D. Langmuir, 2009, 25:12444.
[94] Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D. Langmuir, 2011, 27:3059.
[95] Wilson P W, Lu W, Xu H, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Physical Chemistry Chemistry Physical, 2013, 15:581.
[96] Stone H A. ACS Nano, 2012, 6:6536.
[97] Chen L, Geissler A, Bonaccurso E, Zhang K. ACS Applied Materials & Interfaces, 2014, 6:6969.
[98] Manabe K, Nishizawa S, Kyung K, Shiratori S. ACS Applied Materials & Interfaces, 2014, 6:13985.
[99] Wong T, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477:443.
[100] Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir, 2013, 29:13414.
[101] Zhan X, Yan Y, Zhang Q, Zhan X, Chen F. Journal of Materials Chemistry A, 2014, 2:9390.
[102] Zhang Q, Jin B, Wang B, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2017, 56:2754.
[103] Wang B, Qian T, Zhang Q, Zhan X, Chen F. Surface and Coatings Technology, 2016, 304:31.
[104] Tang Y, Zhang Q, Zhan X, Chen F. Soft Matter, 2015, 11:454.
[105] Cheng T, He R, Zhang Q, Zhan X, Chen F. Journal of Materials Chemistry A, 2015, 3:21637.
[106] Elsharkawy M, Tortorella D, Kapatral S,Megaridis C M. Langmuir, 2016, 32:4278.
[107] Fu Y, Jin B, Zhang Q, Zhan X, Chen F. ACS Applied Materials & Interfaces, 2017, 9:30161.
[108] Zhang G, Gao F, Zhang Q, Zhan X, Chen F. RSC Advances, 2016, 6:7532.
[109] Zhang G, Jiang J, Zhang Q, Gao F, Zhan X, Chen F. Langmuir, 2016, 32:1380.
[110] Zhang G, Jiang J, Zhang Q, Zhan X, Chen F. AIChE Journal, 2017, 63:739.
[111] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463:640.
[112] Chen Y, Zheng Y. Nanoscale, 2014, 6:7703.
[113] Bai H, Sun R, Ju J, Yao X, Zheng Y, Liang L. Small, 2011, 7:3429.
[114] Feng S, Hou Y, Xue Y, Gao L, Jiang L, Zheng Y. Soft Matter, 2013, 9:9294.
[115] Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. Nature Communication, 2012, 3:1247.
[116] Cao M, Ju J, Li K, Dou S, Liu K, Jiang L. Advanced Functional Materials, 2014, 24:3235.
[117] Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L. Nature Communication, 2013, 4:2276.
[118] Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L. Nature, 2016, 532:85.
[119] Chen X, Wu Y, Su B, Wang J, Song Y, Jiang L. Advanced Materials, 2012, 24:5884.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 王静, 于浩迪, 王俊坤, 袁玲, 任林, 高庆宇. 活性人工游泳体的螺旋运动[J]. 化学进展, 2023, 35(2): 206-218.
[3] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[6] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[9] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[10] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[11] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[12] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[13] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[14] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[15] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.