English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 962-969 DOI: 10.7536/PC170324 前一篇   后一篇

• 综述 •

大气颗粒物中有机硝酸酯的研究进展

顾芳婷, 胡敏*, 郑竞, 郭松   

  1. 北京大学环境科学与工程学院 环境模拟与污染控制国家重点联合实验室 北京 100871
  • 收稿日期:2017-03-17 修回日期:2017-05-22 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 胡敏,e-mail:minhu@pku.edu.cn E-mail:minhu@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.91544214,41421064,51636003)和国家重点基础研究发展计划(No.2013CB228503)资助

Research Progress on Particulate Organonitrates

Fangting Gu, Min Hu*, Jing Zheng, Song Guo   

  1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received:2017-03-17 Revised:2017-05-22 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 91544214, 41421064, 51636003) and the National Basic Research Program of China (No. 2013CB228503).
有机硝酸酯是大气中挥发性有机物与自由基反应的产物,半挥发性的气相有机硝酸酯可以通过氧化反应或气粒分配作用进入颗粒相,是二次有机物的一个重要组成部分,逐渐引起大气化学研究者的广泛关注。颗粒相有机硝酸酯具有分子种类众多、理化性质复杂的特点,其全组分的测定有较高的难度,故目前开展的研究还较为有限。基于近年来国内外相关研究,本文对大气颗粒物中有机硝酸酯的形成机制、测定技术和估算方法进行了总结。随着测定技术的不断发展,外场观测已成为颗粒相有机硝酸酯的主要研究方法。热解析管激光诱导荧光系统(TD-LIF)和气溶胶质谱(AMS)为颗粒相有机硝酸酯的总量估算提供了方法,同时其较高时间分辨率的测定方法也为研究有机硝酸酯的大气行为提供更多信息。化学电离源质谱(CIMS)可以提供颗粒相有机硝酸酯的分子信息,有望在外场观测中得到广泛运用。在未来研究中,将外场观测研究、模型模拟和烟雾箱模拟实验相互结合,以实现对颗粒相有机硝酸酯的前体物追踪、大气化学过程的深入了解,为揭示大气颗粒物中有机硝酸酯的生成机制提供新的方向。
Particulate organonitrates are formed from volatile organic compounds (VOCs) oxidation by radicals. A portion of semi-volatile gas-phase organonitrates can be incorporate into aerosol by oxidation reactions or portioning, and has been an important component of secondary organic aerosol (SOA). Particulate organonitrates study has become one of the important aspects of atmospheric chemistry. Given the large number and variability of chemical constituents, and possible chemical transformations of organonitrates, such characterization presents a key problem for research. Based on recent research progress on particulate organonitrates, this paper summarizes the formation mechanism and quantification method of particulate organonitrates. Profiting from the application of high time resolution techniques, field measurements has become the major approach of particulate organonitrates study. Thermal dissociation-laser induced fluorescence (TD-LIF) and aerosol mass spectrometers (AMS) have been used to quantify and provide the evolution processes of particulate organonirates. Meanwhile, chemical ionization mass spectrometer(CIMS)allows for the determination of molecular ion composition of organonitrates, promising to become the important direction of study of particulate organonirates in future field measurements. To have a deep insight on precursor and atmospheric chemistry processes of particulate organonirates, future research should focus on the combination of field measurement, modeling simulation and laboratory simulation, and these will also lead to a more comprehensive understanding of formation mechanism of particulate organonirates.
Contents
1 Introduction
2 Research progress on particulate organonitrates
2.1 Formation mechanism of particle-phase organonitrates
2.2 Measurements and quantification methods of particulate organonitrates
2.3 Formation and environmental effects of particulate organonitrates
3 Conclusion and outlook

中图分类号: 

()
[1] Day D A, Dillon M B, Wooldridge P J, Thornton J A, Rosen R S, Wood E C, Cohen R C. Journal of Geophysical Research:Atmospheres, 2003, 108(D16):4501.
[2] Farmer D K, Matsunaga A, Docherty K S, Surratt J D, Seinfeld J H, Ziemann P J, Jimenez J L. Proceedings of the National Academy of Sciences, 2010, 107(15):6670.
[3] Capouet M, Müller J F. Atmospheric Chemistry and Physics, 2006, 6(6):1455.
[4] Rollins A W, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M, Cohen R C. Science, 2012, 337:1210.
[5] Sun Y L, Zhang Q, Schwab J J, Yang T, Ng N L, Demerjian K L. Atmospheric Chemistry and Physics, 2012, 12(18):8537.
[6] Xu L, Suresh S, Guo H, Weber R J, Ng N L. Atmospheric Chemistry and Physics, 2015, 15(13):7307.
[7] Fry J L, Draper D C, Zarzana K J, Campuzano-Jost P, Day D A, Jimenez J L, Brown S S, Cohen R C, Kaser L, Hansel A, Cappellin L, Karl T, Hodzic Roux A, Turnipseed A, Cantrell C, Lefer B L, Grossberg N. Atmospheric Chemistry and Physics, 2013, 13(17):8585.
[8] Garnes L A, Allen D T. Aerosol Science & Technology, 2002, 36(10):983.
[9] Fry J L, Kiendler-Scharr A, Rollins A W, Wooldridge P J, Brown S S, Fuchs H, Dubé W, Mensah A, Dal Maso M, Tillmann R, Dorn H P, Brauers T, Cohen R C. Atmospheric Chemistry and Physics, 2009, 9(4):1431.
[10] Lim Y B, Ziemann P J. Aerosol Science and Technology, 2009, 43(6):604.
[11] Matsunaga A, Ziemann P J. The Journal of Physical Chemistry A, 2008, 113(3):599.
[12] Roberts J M. Atmospheric Environment. Part A. General Topics, 1990, 24(2):243.
[13] Wisthaler A, Apel E C, Bossmeyer J, Hansel A, Junkermann W, Koppmann R, Meier R, Muller K, Solomon S J, Steinbrecher R, Tillmann R, Brauers T, Tillmann R. Atmospheric Chemistry and Physics, 2008, 8(8):2189.
[14] Perring A E, Pusede S E, Cohen R C. Chemical Reviews, 2013, 113(8):5848.
[15] Flocke F, Volz-Thomas A, Kley D. Atmospheric Environment. Part A. General Topics, 1991, 25(9):1951.
[16] 黄志(Huang Z), 高天宇(Gao T Y), 赵西萌(Zhao X M), 王凤(Wang F), 杨光(Yang G), 王斌(Wang B), 徐振强(Xu Z Q), 胡敏(Hu M), 曾立民(Zeng L M), 张剑波(Zhang J B).北京大学学报(自然科学版)(Acta Scientiarum Naturalium Universitatis Pekinensis), 2016, 52(3):528.
[17] Atkinson R, Aschmann S M, Carter W P L, Winer A M, Pitts J N J. The Journal of Physical Chemistry, 1982, 86(23):4563.
[18] Arey J, Aschmann S M, Eric S C, Kwok E S, Atkinson R. The Journal of Physical Chemistry A, 2001, 105(6):1020.
[19] Talbot R W, Dibb J E, Scheuer E M, Bradshaw J D, Sandholm S T, Blake D R, Elliot A, Flocke F. Journal of Geophysical Research:Atmospheres, 2000, 105(D5):6681.
[20] Blake N J, Blake D R, Wingenter O W, Sive B C, Kang C H, Thornton D C, Alan R B, Elliot A, Frank F, Joyce M H. Journal of Geophysical Research:Atmosphere, 1999, 104(D17):21803.
[21] Perring A E, Wisthaler A, Graus M, Wooldridge P J, Lockwood A L, Mielke L H, Shepson P B, Cohen R C. Atmospheric Chemistry and Physics, 2009, 9(14):4945.
[22] Spittler M, Barnes I, Bejan I, Brockmann K J, Benter T, Wirtz K. Atmospheric Environment, 2006, 40:116.
[23] Shepson P B, Edney E O, Kleindienst T E, Pittman J H, Namie J R, Cupitt L T. Environmental Science & Technology, 1985, 19(9):849.
[24] Hjorth J, Lohse C, Nielsen C J, Skov H, Restelli G. The Journal of Physical Chemistry, 1990, 94(19):7494.
[25] Barnes I, Bastian V, Becker K H, Tong Z. Journal of Physical Chemistry, 1990, 94(6):2413.
[26] Wängberg I. Journal of Atmospheric Chemistry, 1993, 17(3):229.
[27] Berndt T, Böge O. International Journal of Chemical Kinetics, 1997, 29(10):755.
[28] Rollins A W, Kiendler-Scharr A, Fry J L, Brauers T, Brown S S, Dorn H P, Rohrer F. Atmospheric Chemistry and Physics, 2009, 9(18):6685.
[29] Atkinson R, Aschmann S M, Arey J. Environmental Science & Technology, 1992, 26(7):1397.
[30] Horowitz L W, Fiore A M, Milly G P, Cohen R C, Perring A, Wooldridge P J, Peter G H, Louisa K E, Lamarque J F. Journal of Geophysical Research:Atmospheres, 2007, 112:D12S08.
[31] 姚立(Yao L), 葛茂发(Ge M F), 乔志敏(Qiao Z M), 孙政(Sun Z), 王殿勋(Wang D X). 化学通报(Chemistry Bulletin), 2006, 69(5):1.
[32] Aschmann S M, Tuazon E C, Arey J, Atkinson R. Atmospheric Environment, 2011, 45(9):1695.
[33] Aschmann S M, Arey J, Atkinson R. Atmospheric Environment, 2012, 46:264.
[34] Fischer R G, Ballschmiter K. Chemosphere, 1998, 36(14):2891.
[35] Shepson P B, Mackay E, Muthuramu K. Environmental Science & Technology, 1996, 30(12):3618.
[36] Treves K, Shragina L, Rudich Y. Environmental Science & Technology, 2000, 34(7):1197.
[37] Guo H, Xu L, Bougiatioti A, Cerully K M, Capps S L, Hite J R, Carlton A G, Lee S H, Bergin M H, Ng N L. Atmos. Chem. Phys., 2015, 15(9):5211.
[38] Yee L D, Craven J S, Loza C L, Schilling K A, Ng N L, Canagaratna M R, Ziemann P J, Flagan R C,Seinfeld J H. The Journal of Physical Chemistry A, 2012, 116(24):6211.
[39] Lim Y B, Ziemann P J. Environmental Science & Technology, 2005, 39(23):9229.
[40] O'Brien J M, Shepson P B, Muthuramu K, Hao C, Niki H, Hastie D R, Taylor R, Roussel P B. Journal of Geophysical Research:Atmospheres, 1995, 100(D11):22795.
[41] 董璨(Dong C), 侯可勇(Hou K Y), 王俊德(Wang J D), 李海洋(Li H Y). 化学进展(Progress in Chemistry), 2007, 19(2):377.
[42] Lee B H, Mohr C, Lopez-Hilfiker F D, Lutz A, Hallquist M, Lee L, Romer P, Cohen R C, Iyer S, Kurtén T, Hu W W, Day D A, Campuzano J P, Jimenez J L, Xu L, Ng N L, Guo H Y, Weber R J, Wild R J, Brown S S, Koss A, Gouw J D, Olson K, Goldstein A H, Seco R, Kim S, McAvey K, Shepson P B, Starn T, Baumann K, Edgerton E S, Liu J M, Shilling J E, Miller D O, Brune W, Schobesberger S, D'Ambro E L, Thornton J A. Proceedings of the National Academy of Sciences, 2016, 113(6):1516.
[43] Blando J D, Porcja R J, Li T H, Bowman D, Lioy P J, Turpin B J. Environmental Science & Technology, 1998, 32(5):604.
[44] Thornton J A, Wooldridge P J, Cohen R C.Analytical Chemistry, 2000, 72(3):528.
[45] Murphy J G, Day D A, Cleary P A. Atmospheric Chemistry and Physics, 2006, 6(12):5321.
[46] Roberts J M, Osthoff H D, Brown S S, Ravishankara A R, Coffman D, Quinn P, Bates T. Geophysical Research Letters, 2009, 36(20):L20808.
[47] Zhang Y M, Sun J Y, Zhang X Y, Zhang X C. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 11:047.
[48] Sato K, Takami A, Isozaki T, Hikida T, Shimono A, Imamura T. Atmospheric Environment, 2010, 44(8):1080.
[49] Boyd C M, Sanchez J, Xu L, Eugene A J, Nah T, Tuet W Y, Guzman M I, Ng N L. Atmos. Chem. Phys. Discuss, 2015, 15:2679.
[50] Bruns E A, Perraud V, Zelenyuk A, Ezell M J, Johnson S N, Yu Y, Imre D, Alexander M L. Environmental Science & Technology, 2010, 44(3):1056.
[51] Rollins A W, Fry J L, Hunter J F, Kroll J H, Worsnop D R, Singaram S W, Cohen R C. Atmospheric Chemistry and Physics, 2010, 10(9):4111.
[52] 黄晓锋(Huang X F), 赵倩彪(Zhao Q B), 何凌燕(He L Y), 胡敏(Hu M), 卞奇婧(Bian Q J), 薛莲(Xue L), 张远航(Zhang Y H). 中国科学:化学(Science China:Chemistry), 2010, 40(10):1550.
[53] Forstner H J L, Flagan R C, Seinfeld J H. Environmental Science & Technology, 1997, 31(5):1345.
[54] Kleindienst T E, Conver T S, McIver C D, Edney E O. Journal of Atmospheric Chemistry, 2004, 47(1):79.
[55] Surratt J D, Kroll J H, Kleindienst T E, Edney E O, Claeys M, Sorooshian A, Ng N L, Offenberg J H, Lewandowski M, Jaoui M, Flagan R C, Seinfeld J H. Environmental Science & Technology, 2007, 41(2):517.
[56] Iinuma Y, Müller C, Berndt T, Böge O, Claeys M, Herrmann H. Environmental Science & Technology, 2007, 41(19):6678.
[57] Zhang J K, Cheng M T, Ji D S, Liu Z R, Hu B, Sun Y, Wang Y S. Science of the Total Environment, 2016, 562:812.
[58] 唐孝炎(Tang X Y), 张远航(Zhang Y H), 邵敏(Shao M).大气环境化学(Atmospheric Environmental Chemistry). 北京:高教育出版社(Beijing:High Education Press), 2006. 367.
[1] 陆克定 张远航. HOx自由基的实地测量及其化学机制解析*[J]. 化学进展, 2010, 22(0203): 500-514.