English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1215-1227 DOI: 10.7536/PC170545 前一篇   后一篇

• 综述 •

双光子荧光探针

黄池宝*, 陈绍英   

  1. 遵义师范学院化学化工学院 遵义 563002
  • 收稿日期:2017-05-18 修回日期:2017-07-19 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 黄池宝,e-mail:huangchibao@163.com E-mail:huangchibao@163.com
  • 基金资助:
    贵州省高层次创新型人才培养计划项目——"百"层次人才(No.[2016]5683)、国家自然科学基金项目(No.21562050)、贵州省第八批科技创新人才团队建设专项基金项目([2015]4007)、贵州省科学技术基金项目(No.[2015]2146)和贵州省教育厅自然科学重点研究项目(No.KY[2014]296)资助

Two-Photon Fluorescence Probe

Chibao Huang*, Shaoying Chen   

  1. Chemistry and Chemical Engineering College, Zunyi Normal University, Zunyi 563002, China
  • Received:2017-05-18 Revised:2017-07-19 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by Guizhou High Level Innovative Talents Training Program——"Hundred Talents" (No.[2016] 5683), the National Natural Science Foundation of China (No. 21562050), the 8 th Special Fund for the Construction of Research Team of Scientific and Technological Innovation Talents in Guizhou (No.[2015] 4007), the Guizhou Science and Technology Fund Project (No.[2015] 2146), and the Natural Science Key Project of Education Department of Guizhou Province (No. KY[2014]296).
荧光探针作为研究生物系统必不可少的工具,借助双光子显微成像可以直观便捷地对生物活性化合物或生物功能客体成分进行实时动态三维观测与监控。近十年来发展的双光子激发荧光探针,较单光子荧光探针具有显著的优点,如高分辨率、高清晰度、高灵敏度、无光漂白、无光致毒、定靶激发、高横向与纵向分辨率、低的生物组织吸光系数及低的组织自发荧光干扰等。本文综述了近七年来的双光子阳离子探针、双光子阴离子探针、双光子SO2探针、双光子pH探针、双光子核酸探针、双光子半胱氨酸探针、双光子活性氧探针、双光子磷酸探针、双光子CO探针、双光子Alph-细胞探针、双光子CYP1A酶探针、双光子极性、黏度与温度探针的结构特性及其在生物成像方面的应用。双光子荧光探针已被广泛应用于临床诊断、疾病监测和药物筛选上,这推动了生物化学、医学和生命研究的发展。
Fluorescent probes are essential for the study of biological systems. Using two-photon excited fluorescence microscopy, real-time three-dimensional(3D)dynamic observation and monitoring of biologically active compounds and biological function of object composition can be intuitively and conveniently realized. In recent ten years, the developed two-photon excited fluorescence probes, compared with the one-photon fluorescence probes, have significant advantages, such as high resolution, high clarity, high sensitivity, no photobleaching and no photodamage, fixed target excitation, high transverse and longitudinal resolutions, small absorption coefficient of light in tissue, lower tissue auto-fluorescence, etc. The structures, characteristics and applications in biological imaging of two-photon fluorescence probes for cations, anions, SO2, pH, nucleic acid, cysteine, reactive oxygen species, phosphate, CO, alph-cells, CYP1A enzyme, and polarity, viscosity and temperature in recent seven years are reviewed. Two-photon fluorescent probes have been widely used in clinical diagnosis, disease monitoring and drug screening, which has promoted the development of biochemistry, medicine and life sciences.
Contents
1 Introduction
2 Two-photon fluorescent probes
2.1 Cation ion probes
2.2 Anion ion probes
2.3 SO2 probes
2.4 pH probes
2.5 Nucleic acid probes
2.6 Cysteine probes
2.7 Reactive oxygen species (ROS) probes
2.8 The other probes
3 Conclusion

中图分类号: 

()
[1] Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013, 113:192.
[2] Jameson D M, Ross J A. Chem. Rev., 2010, 110:2685.
[3] Kim H M, Cho B R. Acc. Chem. Res., 2009, 42:863.
[4] Ellis-Davies G C R. ACS Chem. Neurosci., 2011, 2:185.
[5] Göppert-Mayer M. Ann. Phys., 1931, 401:273.
[6] Zhang M, Yu M X, Li F Y, Zhu M W, Li M Y, Gao Y H, Li L, Liu Z Q, Zhang J P, Zhang D Q, Yi T, Huang C H. J. Am. Chem. Soc., 2007, 129:10322.
[7] Zipfel W R, Williams R M, Webb W W. Nat. Biotechnol., 2003, 21:1369.
[8] Albota M, Beljonne D, Brédas J, Ehrlich J E, Fu J, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, McCord-Maughon D, Perry J W, Röckel H, Rumi M, Subramaniam G, Webb W W, Wu X L, Xu C. Science, 1998, 281:1653.
[9] Sumalekshmy S, Fahrni C J. Chem. Mater., 2011, 23:483.
[10] Znang X J, Ren X S, Xu Q H, Loh K P, Chen Z K. Org. Lett., 2009, 11:1257
[11] Tian Y S, Lee H Y, Lim C S, Park J, Kim H M, Shin Y N, Kim E S, Jeon H J, Park S B, Cho, B R. Angew. Chem. Int. Ed., 2009, 48:8027.
[12] Li L, Shen X Q, Xu Q H, Yao S Q. Angew. Chem. Int. Ed., 2013, 52:424.
[13] Liu Z Q, Shi M, Li F Y, Fang Q, Chen Z H, Yi T, Huang C H. Org. Lett., 2005, 7:5481.
[14] Hisaki I, Hiroto S, Kim K S, Noh S B, Kim D, Shinokubo H, Osuka A. Angew. Chem. Int. Ed., 2007, 46:5125.
[15] Son J H, Lim C S, Han J H, Danish I A, Kim H M, Cho B R. J. Org. Chem., 2011, 76:8113.
[16] Ahn H, Fairfull-Smith K E, Morrow B J, Lussini V, Kim B, Bondar M V, Bottle S E, Belfield K D. J. Am. Chem. Soc., 2012, 134:4721.
[17] Collot M, Loukou C, Yakovlev A V, Wilms C D, Li D D, Evrard A, Zamaleeva A, Bourdieu L, Léger J, Ropert N, Eilers J, Oheim M, Feltz A, Mallet J. J. Am. Chem. Soc., 2012, 134:14923.
[18] Gu P Y, Lu C J, Hu Z J, Li N J, Zhao T T, Xu Q F, Xu Q H, Zhang J D, Lu J M. J. Mater. Chem. C, 2013, 1:2599.
[19] Abbotto A, Beverina L, Bozio R, Facchetti A, Ferrante C, Pagani G A, Pedron D, Signorini R. Org. Lett., 2002, 4:1495.
[20] Hayek A, Noicoud J, Bolze F, Bourgogne C, Baldeck P L. Angew. Chem. Int. Ed., 2006, 45:6466.
[21] Koo C, Wong K, Man C W, Lam Y, So L K, Tam H, Tsao S, Cheah K, Lau K, Yang Y, Chen J, Lam M H. Inorg. Chem., 2009, 48:872.
[22] Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S, Takahashi H, Nakano M. Angew. Chem. Int. Ed., 2007, 46:3544.
[23] Picot A, D'Aléo A, Baldeck P L, Grichine A, Duperray A, Andraud C, Maury O. J. Am. Chem. Soc., 2008, 130:1532.
[24] Liu Q, Guo B D, Rao Z Y, Zhang B H, Gong J R. Nano Lett., 2013, 13:2436.
[25] Samoc M, Morrall J P, Dalton G T, Cifuentes M P, Humphrey M G. Angew. Chem. Int. Ed., 2007, 46:731.
[26] Biswas S, Wang X, Morales A R, Ahn H, Belfield K D. Biomacromolecules, 2011, 12:441.
[27] Liu L Z, Shao M, Dong X H, Yu X, F Liu Z H, He Z K, Wang Q Q. Anal. Chem., 2008, 80:7735.
[28] Kim H M, An M J, Hong J H, Jeong B H, Kwon O, Hyon J, Hong S, Lee K J, Cho B R. Angew. Chem. Int. Ed., 2008, 47:2231.
[29] Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W, Webb, W W. Science, 2003, 300:1434.
[30] Garaschuk O, Milos R, Konnerth A. Nat. Protocols, 2006, 1:380.
[31] Kobayashi H, Ogawa M, Alford R, Choyke P L, Urano Y. Chem. Rev., 2010, 110:2620.
[32] Fan J L, Hu M M, Zhan P J, Peng X. Chem. Soc. Rev., 2013, 42:29.
[33] Jun M E, Roy B, Ahn K H. Chem. Commun., 2011, 47:7583.
[34] Grabowski Z R, Rothiewicz K. Chem. Rev., 2003, 103:3899.
[35] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97:1515.
[36] Karton-Lifshin N, Albertazzi L, Bendikov M, Baran P S, Shabat D. J. Am. Chem. Soc., 2012, 134:20412.
[37] Kang M Y, Lim C S, Kim H S, Seo E W, Kim H M, Kwon O, Cho B R. Chem. Eur. J., 2012, 18(7):1953.
[38] Meng X M, Wang S X, Li Y M, Zhu M Z, Gu Q X. Chem. Commun., 2012, 48(35):4196.
[39] Ning P, Jiang J C, Li L C, Wang S X, Yu H Z, Feng Y, Zhu M Z, Zhang B C, Yin H, Guo Q X, Meng X M. Biosensors and Bioelectronics, 2016, 77:921.
[40] Baek N Y, Heo C H, Lim C S,Masanta G, Cho B R, Kim H M. Chem. Commun., 2012, 48(38):4546.
[41] Lee H J, Cho C W, Seo H, Singha S, Jun Y W, Lee K H, Jung Y, Kim K T, Park S, Bae S C, Ahn K H. Chem. Commun., 2016, 52(1):124.
[42] Huang C, Qu J, Qi J, Yan M, Xu G. Org. Lett., 2011, 13(6):1462.
[43] Wang D, Ren A M, Guo J F, Zou L Y, Huang S. RSC Adv., 2015, 5(119):98144.
[44] Jiang H E, Li Z J, Kang Y F, Ding L P, Qiao S, Jia S T, Luo W F, Liu W S. Sensors and Actuators B, 2017, 242:112.
[45] Li D X, Sun X, Huang J M, Wang Q, Feng Y, Chen M, Meng X M, Zhu M Z, Wang X. Dyes and Pigments, 2016, 125:185.
[46] Liu F, Ding C Q, Jin M, Tian Y. Analyst., 2015, 140(9):3285.
[47] Xiao H B, Zhang Y Z, Li S Z, Zhang W, Han Z Y, Tan J J, Zhang S Y, Du J Y. Sensors and Actuators B, 2016, 236:233.
[48] Zhou L Y, Hu S Q, Wang H F, Sun H Y, Zhang X B. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 166:25.
[49] Huang C B, Ding C R. Analytica Chimica Acta, 2011, 699(2):198.
[50] Huang C B, Ren A X, Feng C H, Yang N F. Sensors and Actuators B, 2010, 151(1):236.
[51] Li Y M, Chong H B, Meng X M, Wang S X, Zhu M Z, Guo Q X. Dalton Trans., 2012, 41:6189.
[52] Ye W P, Wang S X, Meng X M, Feng Y, Sheng H T, Shao Z L, Zhu M Z, Guo Q X. Dyes and Pigments, 2014, 101:30.
[53] Feng Y, Li D X, Wang Q, Wang S X, Meng X M, Shao Z L, Zhu M Z, Wang X. Sensors and Actuators B, 2016, 225:572.
[54] Yin H J, Zhang B C, Yu H Z, Zhu L, Feng Y, Zhu M Z, Guo Q X, Meng X M. J. Org. Chem., 2015, 80(9):4306
[55] Yuan M S, Wang Q, Wang W, Wang D E, Wang J, Wang J Y. Analyst., 2014, 139(6):1541.
[56] Hu W, Zeng L Y, Wang Y Y, Liu Z H, Ye X X, Li C Y. Analyst., 2016, 141(18):5450.
[57] Wang X M, Wang X H, Feng Y, Zhu M Z, Yin H, Guo Q X, Meng X M. Dalton Trans., 2015, 44(14):6613.
[58] Zhou X H, Jiang Y R, Zhao X J, Guo D. Talanta, 2016, 160:470.
[59] Li D X, Feng Y, Lin J Z, Chen M, Wang S X, Wang X, Sheng H T, Shao Z L, Zhu M Z, Meng X M. Sensors and Actuators B, 2016, 222:483.
[60] Wang Q, Wang W J, Li S Q, Jiang J, Li D, Feng Y, Sheng H T, Meng X M, Zhu M Z, Wang X. Dyes and Pigments, 2016, 134:297
[61] Zhu X Y, Zhu L M, Liu H W, Hu X X, Peng R Z, Zhang J, Zhang X B, Tan W H. Analytica Chimica Acta, 2016, 937:136
[62] Yu S L, Yang X L, Shao Z L, Feng Y, Xi X G, Shao R, Guo Q X, Meng X M. Sensors and Actuators B, 2016, 235:362.
[63] Zhou L Y, Lu D Q, Wang Q Q, Hu S Q, Wang H F, Sun H Y, Zhang X B. Sensors and Actuators B, 2017, 238:274.
[64] Zhou L Y, Liu Y C, Hu S, Wang H F, Sun H, Zhang X B. Tetrahedron, 2016, 72:4637.
[65] Chen S Y, Zhao M, Su J, Zhang Q, Tian X H, Li S L, Zhou H P, Wu J Y, Tian Y P. Dyes and Pigments, 2017, 136:807.
[66] Liu X, Sun Y M, Zhang Y H, Miao F, Wang G C, Zhao H, Yu X Q, Liu H, Wong W Y. Org. Biomol. Chem., 2011, 9(10):3615.
[67] Yang W G, Chan P S, Chan M S, Li K F, Lo P K, Mak N K, Cheah K W, Wong M S. Chem. Commun., 2013, 49(33):3428.
[68] Chi S H, Li L, Wu Y Q. Sensors and Actuators B, 2016, 231:811.
[69] Chi S H,Li L, Wu Y Q. J. Phys. Chem. C, 2016, 120(25):13706.
[70] Zhang H, Wang K, Xuan X X, Lv Q Z, Nie Y M, Guo H M. Chem. Commun., 2016, 52(37):6308.
[71] Wei X J, Yang X L, Feng Y, Ning P, Yu H Z, Zhu M Z, Xi X G, Guo Q X, Meng X M. Sensors and Actuators B, 2016, 231:285.
[72] Meng F F, Liu Y, Yu X Q, Lin W Y. New J. Chem., 2016, 40(9):7399.
[73] Meng X M, Ye W P, Wang S, Feng Y, Chen M, Zhu M Z, Guo Q X. Sensors and Actuators B, 2014, 201:520.
[74] Chung C, Srikun D, Lim C S,Chang C J, Cho B R. Chem. Commun., 2011, 47(34):9618.
[75] Zhang W, Wang X, Li P, Huang F, Wang H, Zhang W, Tang B. Chem. Commun., 2015, 51(47):9710.
[76] Li R Q, Mao Z Q, Rong L, Wu N, Lei Q, Zhu J Y, Zhuang L, Zhang X Z, Liu Z H. Biosensors and Bioelectronics, 2017, 87:73.
[77] Rao A S, Kim D, Nam H,Jo H, Kim K H, Ban C, Ahn K H. Chem. Commun., 2012, 48(26):3206.
[78] Zheng K B, Lin W Y, Tan L, Chen H, Cui H J. Chem. Sci., 2014, 5(9):3439.
[79] Agrawalla B K, Chandran Y, Phue W H, Lee S C, Jeong Y M, Wan S Y D, Kang N Y, Chang Y T. Chem. Soc., 2015, 137(16):5355.
[80] Dai Z R, Ge G B, Feng L, Ning J, Hu L H, Jin Q, Wang D D, Lv X, Dou T Y. J. Am. Chem. Soc., 2015, 137(45):14488.
[81] Huang C B, Peng X, Yi D S, Qu J L, Niu H B. Sensors and Actuators B, 2013, 182:521.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[7] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[8] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[9] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[10] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[11] 李世嘉, 庞尔楠, 郝彩红, 蔡婷婷, 胡胜亮. 固态荧光碳点的制备[J]. 化学进展, 2020, 32(5): 548-561.
[12] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[13] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[14] 杜曼, 霍宝龙, 刘杰民*, 李梦文, 房乐秋, 杨运旭*. 基于硅杂蒽类染料的荧光探针及其应用[J]. 化学进展, 2018, 30(6): 809-830.
[15] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
阅读次数
全文


摘要

双光子荧光探针