English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 695-705 DOI: 10.7536/PC170347 前一篇   后一篇

• 综述 •

CO2响应型乳液体系

郭爽, 陈志强, 任笑菲, 张永民*, 刘雪锋*   

  1. 江南大学 化学与材料工程学院 合成与生物胶体教育部重点实验室 无锡 214122
  • 收稿日期:2017-03-30 修回日期:2017-05-24 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 张永民, 刘雪锋 E-mail:zhangym@jiangnan.edu.cn;xfliu@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21503094)资助

CO2-Responsive Emulsion Systems

Shuang Guo, Zhiqiang Chen, Xiaofei Ren, Yongmin Zhang*, Xuefeng Liu*   

  1. Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
  • Received:2017-03-30 Revised:2017-05-24 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21503094)
乳液在许多工业生产和商品制造过程中扮演着极为重要的角色。如何实现乳液的长期稳定性与快速破乳之间的平衡已成为乳液研究的重中之重。环境刺激响应型乳液的出现为这一问题的解决提供了新的思路。在过去的十年中,CO2作为一种传统pH调节剂的替代者,引起了科研工作者的普遍关注。虽然CO2本质上就是一种pH调节剂,但其相对于传统的酸碱调节却具有无可比拟的优势。直到最近,以CO2作为触发手段开关乳液才得以实现。CO2响应型乳液体系是指在CO2气体刺激下能够对乳液的"稳定"与"破乳"进行智能调控的分散体系,其在石油生产、乳液聚合、萃取分离、化妆品等领域具有巨大的应用潜力。本文从普通乳液、Pickering乳液和微乳液三个方面详细综述了CO2气体刺激在分散体系的研究进展,介绍了CO2响应型乳液体系的智能响应原理、性能及应用,并展望了其发展前景。
Emulsions play an important role in a number of industrial processes and commercial products where immiscible liquid phases coexist. Recently how to balance the long-term stability and quick demulsification has become a key focus in emulsions. The emergence of stimuli-responsive emulsions has brought a ray of dawn. Over the past decade, CO2 as alternative of pH has aroused considerable attention in the fields of surfactants and their aggregates, polymers, solvents, as well as microemulsions, because of its renewability, low cost and good biocompatibility. Essentially CO2 acts as pH, but the former offers more advantages over the latter. However, the focus until recently shifted to the utilization of CO2 as a trigger for triggering emulsions between "on" (stable) or "off" (unstable) states. These CO2-responsive emulsions show considerable application potential in oil recovery, emulsion polymerization, extraction separation, cosmetics and other fields, because they can smartly response to the removal or bubbling of CO2 gas, reflecting in emulsification or demulsification of oil/water mixture. In this review, we highlight the recent advances in this field from general emulsion, Pickering emulsion, and microemulsion, respectively. The principle, performance and applications of the CO2-responsive emulsion system are introduced in details, and their future development and perspectives are also outlooked.
Contents
1 Introduction
2 CO2-responsive emulsions/microemulsions
2.1 CO2-responsive general emulsions
2.2 CO2-responsive Pickering emulsions
2.3 CO2-responsive microemulsions
3 Conclusion

中图分类号: 

()
[1] Myers D. Surfaces, Interfces, and Colloids. NY:John Wiley & Sons, Inc., 1999. 253.
[2] Becher P. Encyclopedia of Emulsion Technology. NY:Marcel Dekker, 1983. 10.
[3] Klier J, Tucker C J, Kalantar T H, Green D P. Adv. Mater., 2000, 12:1751.
[4] Boonme P. J. Cosmet. Dermatol., 2007, 6:223.
[5] Tang J T, Quinlan P J, Tam K C. Soft Matter, 2015, 11:3512.
[6] Simovic S, Ghouchi-Eskandar N, Prestidge C A. J. Drug Deliv. Sci. Technol., 2011, 21:123.
[7] Fernandes D A, Fernandes D D, Li Y C, Wang Y, Zhang Z F, Rousseau D, Gradinaru C C, Kolios M C. Langmuir, 2016, 32:10870.
[8] Kogan A, Garti N. Adv. Colloid Interface Sci., 2006, 123:369.
[9] Cheng M B, Wang J C, Li Y H, Liu X Y, Zhang X, Chen D W, Zhou S F, Zhang Q. J. Control. Release, 2008, 129:41.
[10] Schrade A, Landfester K, Ziener U. Chem. Soc. Rev., 2013, 42:6823.
[11] Wolf S, Feldmann C. Angew. Chem. Inter. Ed., 2016, 55:15728.
[12] Alison L, Ruhs P A, Tervoort E, Teleki A, Zanini M, Isa L, Studart A R. Langmuir, 2016, 32:13446.
[13] Pera-Titus M, Leclercq L, Clacens J M, De Campo F, Nardello-Rataj V. Angew. Chem. Inter. Ed., 2015, 54:2006.
[14] Huang J P, Cheng F Q, Binks B P, Yang H Q. J. Am. Chem. Soc., 2015, 137:15015.
[15] Stuart M A C, Huck W T S, Genzer J, Mueller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9:101.
[16] Zoppe J O, Venditti R A, Rojas O J. J. Colloid Interface Sci., 2012, 369:202.
[17] Binks B P, Murakami R, Armes S P, Fujii S. Angew. Chem. Inter. Ed., 2005, 44:4795.
[18] Singh V K, Ramesh S, Pal K, Anis A, Pradhan D K, Pramanik K. J. Mater. Sci.-Mater. Med., 2014, 25:703.
[19] Wang Z P, Rutjes F P, van Hest J C. Chem. Commun., 2014, 50:14550.
[20] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132:8180.
[21] Tu F Q, Lee D. J. Am. Chem. Soc., 2014, 136:9999.
[22] Lv J, Qiao W H, Xiong C Q. Langmuir, 2014, 30:8258.
[23] Chen Z W, Zhou L, Bing W, Zhang Z J, Li Z H, Ren J S, Qu X G. J. Am. Chem. Soc., 2014, 136:7498.
[24] Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P. Langmuir, 2014, 30:41.
[25] Bufe M, Wolff T. Langmuir, 2009, 25:7927.
[26] Tabor R F, Oakley R J, Eastoe J, Faul C F J, Grillo I, Heenan R K. Soft Matter, 2009, 5:78.
[27] Eastoe J, Dominguez M S, Cumber H, Wyatt P, Heenan R K. Langmuir, 2004, 20:1120.
[28] Jiang Y G, Wan P B, Xu H P, Wang Z Q, Zhang X, Smet M. Langmuir, 2009, 25:10134.
[29] Khoukh S, Tribet C, Perrin P. Colloid Surf.A-Physicochem. Eng. Asp., 2006, 288:121.
[30] Kong W W, Guo S, Wu S Q, Liu X F, Zhang Y M. Langmuir, 2016, 32:9846.
[31] Zhang Y D, Chen H, Liu X F, Zhang Y M, Fang Y, Qin Z R. Langmuir, 2016, 32:13728.
[32] Zhou J, Qiao X Y, Binks B P, Sun K, Bai M, Li Y H, Liu Y. Langmuir, 2011, 27:3308.
[33] Brugger B, Richtering W. Adv. Mater., 2007, 19:2973.
[34] Teixeira I F, da Silva Oliveira A A, Christofani T, Camilo Moura F C. J. Mater. Chem. A, 2013, 1:10203.
[35] Jessop P G, Heldebrant D J, Li X W, Eckert C A, Liotta C L. Nature, 2005, 436:1102.
[36] Liu Y X, Jessop P G, Cunningham M, Eckert C A, Liotta C L. Science, 2006, 313:958.
[37] Ceschia E, Harjani J R, Liang C, Ghoshouni Z, Andrea T, Brown R S, Jessop P G. Rsc Adv., 2014, 4:4638.
[38] Xu P P, Wang Z Z, Xu Z H, Hao J C, Sun D J. J. Colloid Interface Sci., 2016, 480:198.
[39] Liang C, Harjani J R, Robert T, Rogel E, Kuehne D, Ovalles C, Sampath V, Jessop P G. Energy & Fuels, 2012, 26:488.
[40] Qin Y, Yang H Q, Ji J L, Yao S P, Kong Y, Wang Y. Tenside Surfactants Deterg., 2009, 46:294.
[41] Chai M F, Zheng Z B, Bao L, Qiao W H. J. Surfactants Deterg., 2014, 17:383.
[42] Lu H S, Guan X Q, Wang B G, Huang Z Y. J. Surfactants Deterg., 2015, 18:773.
[43] Li H H, Li Q, Hao J C, Xu Z H, Sun D J. Colloid Surf. A-Physicochem. Eng. Asp., 2016, 502:107.
[44] Jessop P G. Aldrichimica Acta, 2015, 48:18.
[45] Zhang Y M, Feng Y J, Wang J Y, He S, Guo Z R, Chu Z L, Dreiss C A. Chem. Commun., 2013, 49:4902.
[46] Zhang Y M, Feng Y J, Wang Y J, Li X L. Langmuir, 2013, 29:4187.
[47] Zhang Y M, Chu Z L, Dreiss C A, Wang Y J, Fei C H, Feng Y J. Soft Matter, 2013, 9:6217.
[48] Zhang Y M, An P Y, Liu X F, Fang Y, Hu X Y. Colloid Poly. Sci., 2015, 293:357.
[49] Su X, Cunningham M F, Jessop P G. Chem. Commun., 2013, 49:2655.
[50] Zhang Y M, Yin H Y, Feng Y J. Green Mater., 2014, 2:95.
[51] Zhang Y M, Feng Y J. J. Colloid Interface Sci., 2015, 447:173.
[52] Zhang Y M, Kong W W, An P Y, He S, Liu X F. Langmuir, 2016, 32:2311.
[53] Zhang Y M, Yang C C, Guo S, Chen H, Liu X F. Chem. Commun., 2016, 52:12717.
[54] Guo Z R, Feng Y J, Wang Y, Wang J Y, Wu Y F, Zhang Y M. Chem. Commun., 2011, 47:9348.
[55] Lin S J, Theato P. Macromol. Rapid Commun., 2013, 34:1118.
[56] Jiang J Z, Zhu Y, Cui Z G, Binks B P. Angew. Chem. Int. Ed., 2013, 52:12373.
[57] Lu H S, Liu D F, Wang B G, Qing D Y, Huang Z Y. J. Dispersion Sci. Technol., 2016, 37:1819.
[58] Rosen M J. Surfactants and Interfacial Phenomena, New Jersey:John Wiley & Sons, Inc., 2004. 303.
[59] Mihara M, Jessop P G, Cunningham M F. Macromolecules, 2011, 44:3688.
[60] Fowler C I, Muchemu C M, Miller R E, Phan L, O'Neill C, Jessop P G, Cunningham M F. Macromolecules, 2011, 44:2501.
[61] Lu H S, Guan X Q, Dai S S, Huang Z Y. J. Dispersion Sci. Technol., 2014, 35:655.
[62] Zhang Q, Yu G Q, Wang W J, Yuan H M, Li B G, Zhu S P. Langmuir, 2012, 28:5940.
[63] Zhou Z, Lu H S, Huang Z Y. J. Dispersion Sci. Technol., 2016, 37:1200.
[64] Lu H S, Zhou Z, Jiang J F, Huang Z Y. J. Appl. Polym. Sci., 2015, 132:41307
[65] George M, Weiss R G. J. Am. Chem. Soc., 2001, 123:10393.
[66] Wang Y P, Xu H P, Zhang X. Adv. Mater., 2009, 21:2849.
[67] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40:94.
[68] Zhang Y M, An P Y, Liu X F. Soft Matter, 2015, 11:2080.
[69] Zhu L Y, Han Y C, Tian M Z, Wang Y L. Langmuir, 2013, 29:12084.
[70] Pickering U S. J. Chem. Soc., 1907, 91:2001.
[71] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7:21.
[72] Zhang Y M, Guo S, Wu W T, Qin Z R, Liu X F. Langmuir, 2016, 32:11861.
[73] Jiang J Z, Ma Y X, Cui Z G, Binks B P. Langmuir, 2016, 32:8668.
[74] Liang C, Liu Q X, Xu Z H. ACS Appl. Mater. Interfaces, 2014, 6:6898.
[75] Morse A J, Armes S P, Thompson K L, Dupin D, Fielding L A, Mills P, Swart R. Langmuir, 2013, 29:5466.
[76] Qian Y, Zhang Q, Qiu X Q, Zhu S P. Green Chem., 2014, 16:4963.
[77] Liu P W, Lu W Q, Wang W J, Li B G, Zhu S P. Langmuir, 2014, 30:10248.
[78] Fanun M. Microemulsions:Properties and Applications, NY:CRC Press, 2008. 51.
[79] Hoar T P, Schulman J H. Nature, 1943, 152:102.
[80] Schulman J H, Stoeckenius W, Prince L M. J. Phys. Chem., 1959, 63:1677.
[81] Brown P, Wasbrough M J, Gurkan B E, Hatton T A. Langmuir, 2014, 30:4267.
[82] Zhang Y M, Zhang Y D, Wang C, Liu X F, Fang Y, Feng Y J. Green Chem., 2016, 18:392.
[1] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[2] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[3] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[4] 田诗伟, 毛国梁, 张珈瑜, 历娜, 姜梦圆, 吴韦. 开关型Pickering乳液体系[J]. 化学进展, 2020, 32(4): 434-453.
[5] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[6] 杨平辉, 孙巍, 胡思, 陈忠仁. 纳米粒子的界面自组装[J]. 化学进展, 2014, 26(07): 1107-1119.
[7] 孟雅莉, 李臻, 陈静, 夏春谷. 离子液体微乳液体系的应用研究[J]. 化学进展, 2011, 23(12): 2442-2456.
[8] 易成林, 杨逸群, 江金强, 刘晓亚, 江明. 颗粒乳化剂的研究及应用[J]. 化学进展, 2011, 23(01): 65-79.
[9] 卫俊杰,苏宝根,邢华斌,张海,杨启炜,任其龙. 碳氢表面活性剂在超临界CO2中形成微乳液的研究进展*[J]. 化学进展, 2009, 21(6): 1141-1148.
[10] 银建中 周丹 王爱琴. 超临界CO2微乳/反胶束体系热力学行为与应用*[J]. 化学进展, 2009, 21(12): 2505-2514.
[11] 杨飞,王君,蓝强,孙德军,李传宪. Pickering乳状液的研究进展*[J]. 化学进展, 2009, 21(0708): 1418-1426.
[12] 汪洋,颜志鹏,陈丰秋,詹晓力. 多相催化中的纳米技术*[J]. 化学进展, 2008, 20(09): 1263-1269.
[13] 贺拥军,齐随涛,赵世永. 纳米粒子稳定乳液及其在纳米结构合成中的应用*[J]. 化学进展, 2007, 19(9): 1443-1448.
[14] 黄维安,蓝强,张妍. 胶体颗粒在液-液界面上的吸附行为及界面组装[J]. 化学进展, 2007, 19(0203): 212-219.
[15] 张国栋,陈晓,靖波. 室温离子液体中的有序分子组合体*[J]. 化学进展, 2006, 18(09): 1085-1091.
阅读次数
全文


摘要

CO2响应型乳液体系