English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 476-490 DOI: 10.7536/PC170209 前一篇   后一篇

• 综述 •

偶氮桥联二呋咱:合成及其分子结构-熔点的构效关系

刘如沁1,2, 索志荣2, 何乃珍2, 陈爽2, 黄明1*   

  1. 1. 中国工程物理研究院化工材料研究所 绵阳 621900;
    2. 西南科技大学材料科学与工程学院 绵阳 621010
  • 收稿日期:2017-02-14 修回日期:2017-04-08 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 黄明 E-mail:jy_hm@163.com
  • 基金资助:
    国防科工局技术基础科研项目(No.JSJL2015212A001)资助

Azo-Bridged Coupling Bisfurazan: Synthesis and Its Structure-Function Relationship Between Molecular Structure and Melting Point

Ruqin Liu1,2, Zhirong Suo2, Naizhen He2, Shuang Chen2, Ming Huang1*   

  1. 1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China;
    2. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
  • Received:2017-02-14 Revised:2017-04-08 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the Technology-Fundamental Research Project of State Administration of Science,Technology and Industry for National Defense of China (No.JSJL2015212A001).
偶氮桥联二呋咱是由两个相同的单呋咱环经偶氮桥联反应所构成的。它是一类热化学性能卓越的富氮高能密度材料,因具有高含氮量、低碳氢、良好的氧平衡、高生成焓并具有共轭结构等优点而备受关注,在高能炸药和固体火箭推进剂等领域有着重要的应用前景。本文从合成角度综述了近二十年来一些典型的偶氮桥联二呋咱类化合物(如3,3'-二氨基-4,4'-偶氮呋咱、3,3'-二硝基-4,4'-偶氮呋咱、偶氮桥联二呋咱卤化物和唑基偶氮桥联二呋咱等)的研究进展,系统讨论了不同侧链取代基对偶氮桥联二呋咱熔点性质的影响,其影响因素主要包括:氢键效应、诱导效应、平面性效应、侧链取代基的体积大小以及对称性作用。通过梳理其分子结构-熔点的构效关系,可为选择性设计和合成具有特定热化学性能的新型偶氮桥联呋咱类化合物提供理论参考。
Azo-bridged coupling bisfurazan is formed by two same furazan rings via the azo-bridged coupling reaction. Azo-bridged coupling bisfurazan compounds are one of the nitrogen rich high-energy density materials with predominant thermal-chemical property, which have attracted great attention due to their excellent features such as high percentage of nitrogen, low carbon and hydrogen content, good oxygen balance, high formation enthalpy, and conjugated structure. And they have an optimistic and bright foreground for applying to the fields of high energetic explosive, as well as solid rocket propellant. The research advances of some azo-bridged coupling bisfurazan compounds, such as 3,3'-diamino-4,4'-azofurazan, 3,3'-dinitro-4,4'-azofurazan, azo-bridged coupling bisfurazan halide and azole substituted azo-bridged coupling bisfurazan, in recent 20 years were reviewed from a point view of synthetic methods in this paper. Effects of the side chain substituents on azo-bisfurazan melting point were discussed preliminarily based on the large amounts of melting point data from the literatures. Factors influencing azo-bisfurazan melting point mainly include hydrogen bonded effect, inductive effect, planarity effect, side chain substituent volume and symmetry effect. The structure-function relationship between azo-bisfurazan molecular structure and melting point was studied. This study could contribute to supporting a theoretical reference for the design and synthesis of the novel azo-bridged coupling furazan compounds with specified thermal-chemical performance.
1 Introduction
2 Synthesis of azo-bridged coupling bisfurazan
2.1 Diamino azofurazan and its derivatives
2.2 3,3'-Dinitro-4,4'-azofurazan (DNAzF)
2.3 Azofurazan halide
2.4 Cyano azofurazan and its derivatives
2.5 Azole substituted azofurazan
2.6 Other azo-bridged coupling bisfurazan
3 Structure-function relationship between molecular structure and melting point for azo-bridged coupling bisfurazan
3.1 The basic chemical structure and melting point data of azo-bridged coupling bisfurazan
3.2 Effect of simple substituent groups on melting point
3.3 Effect of the side chain heterocyclic substituents on melting point
3.4 Volume and planarity effect of the side chain substituents 3.5 Symmetry effect of the side chain substituents 4 Conclusion

中图分类号: 

()
[1] (a) 欧育湘(Ou Y X), 孟征(Meng Z), 刘进全(Liu J Q). 化工进展(Chemical Industry and Engineering Progress), 2007, 26:762.; (b) 欧育湘(Ou Y X), 孟征(Meng Z), 刘进全(Liu J Q). 化工进展(Chemical Industry and Engineering Progress), 2007, 26:1690.; (c) 公绪滨(Gong X B), 孙成辉(Sun C H), 庞思平(Pang S P), 张静(Zhang J), 李玉川(Li Y C), 赵信岐(Zhao X Q). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32:486.
[2] (a) Bayat Y, Mokhtari J, Farhadian N, Bayat M. J. Energ. Mater., 2012, 30:124.; (b) Mandal A K, Pant C S, Kasar S M, Soman T. J. Energ. Mater., 2009, 27:231.; (c) 庞思平(Pang S P), 申帆帆(Shen F F), 吕芃浩(Lü P H), 董凯(Dong K), 张义迎(Zhang Y Y), 孙成辉(Sun C H), 宋建伟(Song J W), 赵信岐(Zhao X Q). 兵工学报(Acta Armamentarii), 2014, 35:725.
[3] Eaton P E, Gilardi R L, Zhang M X. Adv. Mater., 2000, 12:1143.
[4] (a) Koch E C. Propellants Explos. Pyrotech., 2016, 41:526.; (b) Zhang J H, Shreeve J M. J. Am. Chem. Soc., 2014, 136:4437.; (c) 柳沛宏(Liu P H), 曹端林(Cao D L), 王建龙(Wang J L), 冯璐璐(Feng L L), 张楠(Zhang N), 秦宗扬(Qin Z Y). 化工进展(Chemical Industry and Engineering Progress), 2015, 34:1357.
[5] (a) Zhang J H, Shreeve J M. J. Phys. Chem. C, 2015, 119:12887.; (b) Wu B, Yang H W, Lin Q H, Wang Z X, Lua C X, Cheng G B. New J. Chem., 2015, 39:179.
[6] Tang Y X, Zhang J H, Mitchell L A, Parrish D A, Shreeve J M. J. Am. Chem. Soc., 2015, 137:15984.
[7] (a) 高莉(Gao L). 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2013.; (b) 李战雄(Li Z X), 唐松青(Tang S Q). 含能材料(Chinese Journal of Energetic Materials), 2006, 14:77.
[8] (a) 霍欢(Huo H), 王伯周(Wang B Z), 王锡杰(Wang X J), 周诚(Zhou C), 贾思媛(Jia S Y). 化学推进剂与高分子材料(Chemical Propellants & Polymeric Materials), 2013, 11:15.; (b) 张俊林(Zhang J L), 毕福强(Bi F Q), 王伯周(Wang B Z), 霍欢(Huo H), 翟连杰(Zhai L J), 王锡杰(Wang X J). 含能材料(Chinese Journal of Energetic Materials), 2016, 24:810.; (c) Li X, Liu X Y, Zhang S, Wu H P, Wang B Z, Yang Q, Wei Q, Xie G, Chen S P, Gao S L. J. Chem. Eng. Data, 2016, 61:207.; (d) Semyakin S S, Struchkova M I, Sheremetev A B. Chem. Heterocycl. Comp., 2016, 52:346.
[9] 张德雄(Zhang D X), 张衍(Zhang Y), 王琦(Wang Q). 固体火箭技术(Journal of Solid Rocket Technology), 2004, 27:32.
[10] (a) Wang L X, Yi C H, Zou H T, Liu Y, Li S N. Comput. Theor. Chem., 2011, 963:135.; (b) Li J Z, Wang B Z, Fan X Z, Wei H J, Fu X L, Zhou C, Huo H. Def. Technol., 2013, 9:153.; (c) Sinditskii V P, Vu M C, Sheremetev A B, Alexandrova N S. Thermochim. Acta, 2008, 473:25.; (d) Wang L X, Tuo X L, Yi C H, Zou H T, Xu J, Xu W L. J. Mol. Graphics Modell., 2009, 28:81.; (e) Zhang J Q, Zhang W, Zhu H, Zhang X G. Chin. J. Explos. Propellants, 2006, 29:36.
[11] (a) Pagoria P. Propellants Explos. Pyrotech., 2016, 41:452.; (b) 雷晴(Lei Q), 陶永杰(Tao Y J), 何金选(He J X). 固体火箭技术(Journal of Solid Rocket Technology), 2006, 29:354.
[12] Sheremetev A B, Ivanova E A, Dmitriev D E, Kulagina V O, Averkiev B B, Antipin M Y. J. Heterocycl. Chem., 2005, 42:803.
[13] (a) Sheremetev A B, Kulagina V O, Ivanova E A. J. Org. Chem., 1996, 61:1510.; (b) Liu Y J, Zhang J H, Wang K C, Li J S, Zhang Q H, Shreeve J M. Angew. Chem. Int. Ed., 2016, 55:11548.
[14] Solodyuk G D, Bolydrev M D, Gidaspov B V, Nikolaev V D. Zh. Org. Khim., 1981, 17:861.
[15] Gunasekaran A, Trudell M L, Boyer J H. Heteroat. Chem., 1994, 5:441.
[16] 高莉(Gao L), 杨红伟(Yang H W), 汤永兴(Tang Y X), 程广斌(Cheng G B), 吕春绪(Lü C X). 火炸药学报(Chinese Journal of Explosive & Propellants), 2013, 36:47.
[17] Brinck T. Green Energetic Materials. Germany:John Wiley & Sons. Ltd., 2014. 239.
[18] Batog L V, Konstantinova L S, Rozhkov V Y. Russ. Chem. Bull. Int. Ed., 2005, 54:1915.
[19] (a) Sheremetev A B, Aleksandrova N S, Novikova T S, Khmel'nitskii L I, Izv. Akad. Nauk USSR, Ser. Khim., 1989, 749.; (b) Chavez D, Hill L, Hiskey M, Kinkead S. J. Energ. Mater., 2000, 18:219.
[20] 周群(Zhou Q), 王伯周(Wang B Z), 张叶高(Zhang Y G), 霍欢(Huo H), 李辉(Li H), 马玲(Ma L). 火炸药学报(Chinese Journal of Explosive & Propellants), 2013, 36:16.
[21] Suponitsky K Y, Lyssenko K A, Antipin M Y, Aleksandrova N S, Sheremetev A B, Novikova T S. Russ. Chem. Bull. Int. Ed., 2009, 58:2129.
[22] Fischer D, Klap tke T M, Reymann M, Stierstorfer J. Chem. Eur. J., 2014, 20:6401.
[23] Batog L V, Konstantinova L S, Kulikov A S, Makhova N N. Russ. Chem. Bull. Int. Ed., 2013, 62:1388.
[24] Sheremetev A B, Aleksandrova N S, Yudin I L. Mendeleev Commun., 2003, 13:31.
[25] Yu Q, Wang Z X, Wu B, Yang H W, Ju X H, Lu C X, Cheng G B. J. Mater. Chem. A, 2015, 3:8156.
[26] (a) 李洪珍(Li H Z), 周小清(Zhou X Q), 李金山(Li J S), 黄明(Huang M). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28:1646.; (b) 李洪珍(Li H Z), 李金山(Li J S), 黄明(Huang M), 周小清(Zhou X Q). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29:798.
[27] Sheremetev A B, Aleksandrova N S, Dmitriev D E. Mendeleev Commun., 2006, 16:163.
[28] Sheremetev A B, Aleksandrova N S, Mantseva E V, Dmitriev D E. Mendeleev Commun., 2000, 10:67.
[29] Sheremetev A B, Shamshina J L, Dmitriev D E, Lyubetskii D V, Antipin M Y. Heteroat. Chem., 2004, 15:199.
[30] 范艳洁(Fan Y J), 王伯周(Wang B Z), 周彦水(Zhou Y S), 贾思媛(Jia S Y), 霍欢(Huo H). 含能材料(Chinese Journal of Energetic Materials), 2009, 17:385.
[31] Tang Y X, He C L, Mitchell L A, Parrish D A, Shreeve J M. Angew. Chem. Int. Ed., 2016, 55:5565.
[32] Tang Y X, Gao H X, Imler G H, Parrishc D A, Shreeve J M. RSC Adv., 2016, 6:91477.
[33] Leonard P W, Chavez D E, Pagoria P F, Parrish D L. Propellants Explos. Pyrotech., 2011, 36:233.
[34] Wang B Z, Zhang G F, Huo H, Fan Y J, Fan X Z. Chin. J. Chem., 2011, 29:919.
[35] 高莉(Gao L), 杨红伟(Yang H W), 伍波(Wu B), 程广斌(Cheng G B), 吕春绪(Lü C X). 含能材料(Chinese Journal of Energetic Materials), 2013, 21:226.
[36] 李辉(Li H), 于倩倩(Yu Q Q), 王伯周(Wang B Z), 来蔚鹏(Lai W P), 葛忠学(Ge Z X), 李亚南(Li Y N), 刘宁(Liu N). 含能材料(Chinese Journal of Energetic Materials), 2013, 21:821.
[37] Qu Y Y, Zeng Q, Wang J, Ma Q, Li H Z, Li H B, Yang G C. Chem. Eur. J., 2016, 22:12527.
[38] Li H, Wang B Z, Li X Z, Tong J F, Lai W P, Fan X Z. Bull. Korean Chem. Soc., 2013, 34:686.
[39] Luk'yanov O A, Pokhvisneva G V, Ternikova T V, Shlykova N I. Russ. Chem. Bull. Int. Ed., 2012, 61:360.
[40] Petrosyan V A, Frolovsky V A. Russ. Chem. Bull. Int. Ed., 2000, 49:1421.
[41] Sheremetev A B, Lyalin B V, Kozeev A M, Palysaeva N V, Struchkova M I, Suponitsky K Y. RSC Adv., 2015, 5:37617.
[42] Tselinskii I V, Mel'nikova S F, Zelenov M P. Zh. Org. Khim., 1996, 32:766.
[43] Romanova T V, Zelenov M P, Mel'nikova S F, Tselinsky I V. Russ. Chem. Bull. Int. Ed., 2009, 58:2188.
[44] Sheremetev A B, Andrianov V G, Mantseva E V, Shatunova E V, Aleksandrova N S, Yudin I L, Dmitriev D E, Averkiev B B, Antipin M Y. Russ. Chem. Bull. Int. Ed., 2004, 53:596.
[45] Sheremetev A B, Kozeev A M, Aleksandrova N S, Struchkova M I, Suponitsky K Y. Chem. Heterocycl. Comp., 2013, 49:1358.
[46] 李云路(Li Y L), 薛梅(Xue M), 王建龙(Wang J L), 曹端林(Cao D L), 马忠亮(Ma Z L). 有机化学(Chinese Journal of Organic Chemistry), 2016, 36:1528.
[47] 闫涛(Yan T), 王建华(Wang J H), 刘玉存(Liu Y C), 张晓玉(Zhang X Y), 黄明(Huang M), 常双君(Chang S J), 于雁武(Yu Y W), 荆苏明(Jing S M). 含能材料(Chinese Journal of Energetic Materials), 2016, 24:202.
[48] 赵继阳(Zhao J Y), 俞所银(Yu S Y), 赵颖(Zhao Y). 江苏教育学院学报(自然科学版)(Journal of Jiangsu Institute of Education (Natural Sciences)), 2008, 25:16.
[49] 蒋栋(Jiang D), 王媛媛(Wang Y Y), 刘洁(Liu J), 戴立益(Dai L Y). 化学通报(Chemical Bulletin), 2007, 70:371.
[50] 张锁江(Zhang S J), 姚晓倩(Yao X Q), 刘晓敏(Liu X M), 王金泉(Wang J Q). 化学进展(Progress in Chemistry), 2009, 21:2465.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.