English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 318-328 DOI: 10.7536/PC160728 前一篇   后一篇

• 综述 •

N-卤胺类高分子与纳米抗菌材料的制备及应用

李平1, 董阿力德尔图2*, 孙梓嘉1, 高歌1*   

  1. 1. 吉林大学化学学院 长春 130021;
    2. 内蒙古大学化学与化工学院 呼和浩特 010021
  • 收稿日期:2016-07-25 修回日期:2016-12-13 出版日期:2017-02-15 发布日期:2017-02-27
  • 通讯作者: 董阿力德尔图, 高歌 E-mail:gaoge@jlu.edu.cn;dongali@imu.edu.cn
  • 基金资助:
    吉林省自然科学基金项目(No.201115011)资助

Synthesis and Applications of Antibacterial N-Halamine Polymers and Nanomaterials

Ping Li1, Alideertu Dong2*, Zijia Sun1, Ge Gao1*   

  1. 1. College of Chemistry, Jilin University, Changchun 130021, China;
    2. College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
  • Received:2016-07-25 Revised:2016-12-13 Online:2017-02-15 Published:2017-02-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of Jilin Province (No. 201115011).
在诸多的抗菌剂中,N-卤胺类抗菌剂作为新型抗菌剂,具有高效、持久、广谱、可再生、无毒和对环境无污染等优点,是一种绿色环保高效的抗菌剂。因此,对N-卤胺类抗菌剂的研究受到广大学者的高度重视。本文综述了高分子N-卤胺和纳米N-卤胺抗菌材料的合成途径以及应用。高分子N-卤胺材料的合成主要包括三种方法:由单体聚合得到的高分子N-卤胺;N-卤胺前驱体接枝在其他高分子材料表面而形成的接枝聚合物;以及共混、静电纺丝、包覆等其他手段。对于N-卤胺抗菌材料而言,接触面积对其抗菌活性至关重要,纳米尺寸的N-卤胺抗菌材料具有非常大的比表面积,因而显示出更加优异的抗菌性能。本文着重介绍了纳米N-卤胺抗菌材料的研究进展和发展方向,并在分析N-卤胺基抗菌材料研究现状的基础上,对其开发和应用前景进行了展望。
N-halamine antibacterial materials have aroused scientists' great interest due to their unique properties, such as powerful antibacterial activity, long term stability, effectiveness toward a broad spectrum of microorganisms, regenerability upon exposure to washing cycles, safety to humans and environment. In this review, recent development is summarized by discussing the synthesis and applications of N-halamine antibacterial polymers and N-halamine antibacterial nanomaterials. Three main approaches of preparation of N-halamine polymers are given:polymerization of N-halamine monomers; grafting N-halamine monomers onto polymer surfaces; others (blending, coating, electrospinning, etc.). Antibacterial performance of N-halamine materials strongly depends on their surface area, and thus nano-sized N-halamines exhibit high antibacterial activity due to the large activated surface area. So the research progress and developing trend of N-halamine nanomaterials are emphatically introduced. The subsequent development and application prospect of N-halamine antibacterial materials are also discussed.

Contents
1 Introduction
2 Antibacterial N-halamine polymers
2.1 Preparation of N-halamine polymers from the polymerization of N-halamine monomers
2.2 Preparation of N-halamine polymers by grafting N-halamine monomers onto polymer surfaces
2.3 Others
3 N-halamine nanomaterials
3.1 Preparation of N-halamine nanomaterials
3.2 Application of N-halamine nanomaterials
4 Conclusion

中图分类号: 

()
[1] Gabriel G J, Som A, Madkour A E, Eren T, Tew G N. Mater. Sci. Eng. R:Rep., 2007, 57(1/6):28.
[2] Denis-Rohr A, Bastarrachea L J, Goddard J M. Food and Bioproducts Processing, 2015, 96:12.
[3] Farah S, Aviv O, Laout N, Ratner S, Domb A J. J. Control. Release, 2015, 216:18.
[4] Zhou C E, Kan C W. Appl. Surf. Sci., 2015, 328:410.
[5] Sun Y Y, Sun G. J. Appl. Polym. Sci., 2001, 80(13):2460.
[6] Kenawy E R, Al-Deyab S S, Shaker N O, El-Sadek B M, Khattab A H B. J. Appl. Polym. Sci., 2009, 113(2):818.
[7] 亢真真(Kang Z Z), 焦玉超(Jiao Y C),张冰(Zhang B),梁杰(Liang J). 上海师范大学学报(自然科学版)(Journal of Shanghai Normal University (Natural Sciences)), 2012, 41(5):540.
[8] 刘殷(Liu Y), 任学宏(Ren X H). 纺织学报(Journal of Textile Research), 2013, 34(2):129.
[9] Kenawy E R, Worley S D, Broughton R. Biomacromolecules, 2007, 8(5):1359.
[10] Akdag A, Kocer H B, Worley S D, Broughton R M, Webb T R, Bray T H. J. Phys. Chem. B, 2007, 111(20):5581.
[11] 赵洁(Zhao J), 安秋凤(An Q F), 李献起(Li X Q), 魏元博(Wei Y B). 化学进展(Progress in Chemistry), 2014, 26(2/3):310.
[12] Kovacic P, Lowery M K. J. Org. Chem., 1969, 34:911.
[13] Kovacic P, Lowery M K, Field K W. Chem. Rev., 1970, 70:639.
[14] Williams D E, Elder E D, Worley S D. Appl. Environ. Microbiol., 1988, 54(10):2583.
[15] Akdag A, McKee M L, Worley S D. J. Phys. Chem. A, 2006, 110(24):7621.
[16] Fliermans C B, Harvey R S. Appl. Environ. Microbiol., 1984, 47(6):1307.
[17] Barnela S B, Worley S D, Williams D E. J. Pharm. Sci., 1987, 76(3):245.
[18] Lauten S D, Sarvis H, Wheatley W B, Williams D E, Mora E C, Worley S D. Appl. Environ. Microbiol., 1992, 58(4):1240.
[19] Sun Y Y, Sun G. Abstr. Pap. Am. Chem. S., 2000, 219:U380.
[20] Sun Y, Sun G. Macromolecules, 2002, 35(23):8909.
[21] Chen Y, Worley S D, Huang T S, Weese J, Kim J, Wei C I, Williams J F. J. Appl. Polym. Sci., 2004, 92(1):363.
[22] Cao Z B, Sun Y Y. J. Biomed. Mater. Res. Part A, 2008, 85A (1):99.
[23] Dutta A K, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H, Ifuku S. Carbohyd. Polym., 2015, 115:342.
[24] Chen Y, Wang L, Yu H J, Shi Q, Dong X C. J. Mater. Sci., 2007, 42(11):4018.
[25] Cao Z B, Sun Y Y. ACS Appl. Mater. Inter., 2009, 1(2):494.
[26] Ahmed A E S I, Hay J N, Bushell M E, Wardell J N, Cavalli G. J. Appl. Polym. Sci., 2009, 113(4):2404.
[27] Kocer H B, Worley S D, Broughton R M, Huang T S. React. Funct. Polym., 2011, 71(5):561.
[28] Jiang Z M, Demir B, Broughton R M, Ren X H, Huang T S, Worley S D. J. Appl. Polym. Sci., 2016, 133(19):43413.
[29] Kocer H B. Prog. Org. Coat., 2012, 74(1):100.
[30] Kou L, Liang J, Ren X, Kocer H B, Worley S D, Tzou Y M, Huang T S. Ind. Eng. Chem. Res., 2009, 48(14):6521.
[31] Tan L C, Maji S, Mattheis C, Zheng M Y, Chen Y W. Caballero-Diaz E, Gil P R, Parak W J, Greiner A, Agarwal S. Macromol. Biosci., 2012, 12(8):1068.
[32] Sun Y Y, Sun G. J. Appl. Polym. Sci., 2003, 88(4):1032.
[33] Liu S, Sun G. Polymer, 2008, 49(24):5225.
[34] Choi K, Nam M J, Kim J Y, Yoon J, Lee J C. Macromol. Res., 2011, 19(12):1227.
[35] Kocer H B, Cerkez I, Worley S D, Broughton R M, Huang T S. ACS Appl. Mater. Inter., 2011, 3(8):2845.
[36] Kang Z Z, Zhang B, Jiao Y C, Xu Y H, He Q Z, Liang J. Cellulose, 2013, 20(2):885.
[37] Zhang B, Jiao Y C, Kang Z Z, Ma K K, Ren X H, Liang J. Cellulose, 2013, 20(6):3067.
[38] Liu Y, Liu Y, Ren X H, Huang T S. Appl. Surf. Sci., 2014, 296:231.
[39] Jiang Z M, Liu Y, Li R, Ren X H, Huang T S. Polym. Advan. Technol., 2016, 27(4):460.
[40] Jie Z Q, Yan X F, Zhao L H, Worley S D, Liang J. React. Funct. Polym., 2013, 73(11):1580.
[41] Li R, Hu P, Ren X H, Worley S D, Huang T S. Carbohyd. Polym., 2013, 92(1):534.
[42] Wu L, Xu Y, Cai L, Zang X, Li Z X. Appl. Surf. Sci., 2014, 314:832.
[43] Zhao N, Liu S. Eur. Polym. J., 2011, 47(8):1654.
[44] Liu S, Zhao N, Rudenja S. Macromol. Chem. Phys., 2010, 211(3):286.
[45] Zhao N, Zhanel G G, Liu S. J. Appl. Polym. Sci., 2011, 120(1):611.
[46] Lee J, Whang H S. J. Appl. Polym. Sci., 2011, 122(4):2345.
[47] 张晓红(Zhang X H), 洪宇文(Hong Y W), 段颖(Duan Y.), 殷茂力(Yin M L), 马维(Ma W), 李蓉(Li R), 任学宏(Ren X H), 功能材料(Functional Materials), 2015, 12(46):12110.
[48] Ren X H, Akdag A, Zhu C, Kou L, Worley S D, Huang T S. J. Biomed. Mater. Res. Part A, 2009, 91A (2):385.
[49] Ren X H, Kocer H B, Worley S D, Broughton R M, Huang T S. J. Appl. Polym. Sci., 2013, 127(4):3192.
[50] Li R, Dou J F, Jiang Q Y, Li J, Xie Z W, Liang J, Ren X H. Chem. Eng. J., 2014, 248:264.
[51] Ren X, Kou L, Kocer H B, Worley S D, Broughton R M, Tzou Y M, Huang T S. J. Biomed. Mater. Res. Part B:Appl. Biomater., 2009, 89(2):475.
[52] Cerkez I, Worley S D, Broughton R M, Huang T S. React. Funct. Polym., 2013, 73(11):1412.
[53] Cerkez I, Worley S D, Broughton R M, Huang T S. Prog. Org. Coat., 2013, 76(7/8):1082.
[54] Cerkez I, Kocer H B, Worley S D, Broughton R M, Huang T S. J. Appl. Polym. Sci., 2016, 133(9):43088.
[55] Bastarrachea L J, Goddard J M. Appl. Surf. Sci., 2016, 378:479.
[56] Xiao S, Wu S, Shen M, Guo R, Huang Q, Wang S, Shi X. ACS Appl. Mater. Inter., 2009, 1(12):2848.
[57] Costi R, Saunders A E, Banin U. Angew. Chem. Int. Ed. Engl., 2010, 49(29):4878.
[58] Lek J Y, Xi L, Kardynal B E, Wong L H, Lam Y M. ACS Appl. Mater. Inter., 2011, 3(2):287.
[59] Jang J, Kim Y. Chem. Commun. (Camb), 2008, (34):4016.
[60] Dong A, Zhang Q, Wang T, Wang W W, Liu F Q, Gao G. J. Phys. Chem. C, 2010, 114(41):17298.
[61] Dong A, Huang J F, Lan S, Wang T, Xiao L H, Wang W W, Zhao T Y, Zheng X, Liu F Q, Gao G, Chen Y X. Nanotechnology, 2011, 22(29):295602.
[62] Zhao L H, Yan X F, Jie Z Q, Yang H, Yang S P, Liang J. J. Nanopart. Res., 2014, 16(7):2454.
[63] Dong A, Lan S, Huang J F, Wang T, Zhao T Y, Wang W W, Xiao L H, Zheng X, Liu F Q, Gao G, Chen Y X. J. Colloid Interface Sci., 2011, 364(2):333.
[64] Dong A, Lan S, Huang J F, Wang T, Zhao T Y, Xiao L H, Wang W W, Zheng X, Liu F Q, Gao G, Chen Y X. ACS Appl. Mater. Inter., 2011, 3(11):4228.
[65] Dong A, Xue M, Lan S, Wang Q, Zhao Y, Wang Y, Zhang Y L, Gao G, Liu F Q, Harnoode C. Colloids Surf. B, 2014, 113:450.
[66] Dong A, Huang Z, Lan S, Wang Q, Bao S, Siriguleng, Zhang Y L, Gao G, Liu F Q, Harnoode C. J. Colloid Interface Sci., 2014, 413:92.
[67] Li C H, Xue L Y, Cai Q, Bao S, Zhao T Y, Xiao L H, Gao G, Harnoode C, Dong A. RSC Adv., 2014, 4(88):47853.
[68] Dong A, Sun Y, Lan S, Wang Q, Cai Q, Qi X Z, Zhang Y L, Gao G, Liu F Q, Harnoode C. ACS Appl. Mater. Inter., 2013, 5(16):8125.
[69] Li C H, Hou J J, Huang Z, Zhao T Y, Xiao L H, Gao G, Harnoode C, Dong A. Colloids Surf. B, 2015, 126:106.
[70] Yao Q F, Gao Y Y, Gao T Y, Zhang Y L, Harnoode C, Dong A, Liu Y, Xiao L H. Colloids Surf. B, 2016, 144:319.
[71] Cai Q, Bao S, Zhao Y, Zhao T Y, Xiao L H, Gao G, Chokto H, Dong A. J. Colloid Interface Sci., 2015, 444:1.
[72] Dong Q G Q, Cai Q, Gao Y Y, Zhang S Q, Gao G, Harnoode C, Morigen, Dong A. New J. Chem., 2015, 39(3):1783.
[73] Qiu Q H, Liu T, Li Z H, Ding X B. J. Mater. Chem. B, 2015, 3(36):7203.
[74] Yan X F, Jie Z Q, Zhao L H, Yang H, Yang S P, Liang J. Chem. Eng. J., 2014, 254:30.
[75] Natan M, Gutman O, Lavi R, Margel S, Banin E. ACS Nano, 2015, 9(2):1175.
[76] Gutman O, Natan M, Banin E, Margel S. Biomaterials, 2014, 35(19):5079.
[77] Yu H X, Zhang X F, Zhang Y T, Liu J D, Zhang H Q. Desalination, 2013, 326:69.
[78] Kang J, Han J, Gao Y, Gao T, Lan S, Xiao L, Zhang Y, Gao G, Chokto H, Dong A. ACS Appl. Mater. Inter., 2015, 7(31):17516.
[79] Kang B, Li Y D, Liang J, Yan X, Chen J, Lang W Z. RSC Adv., 2016, 6(3):1710.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[4] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[5] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[6] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[7] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[8] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[9] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[10] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[11] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.
[12] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[13] 袁婷联, 蒋莹琰, 王伟. 光热显微术:基于光吸收的单分子成像技术[J]. 化学进展, 2016, 28(5): 607-616.
[14] 刘亚杰, 张鹏, 杜建委, 王幽香. 微纳米粒子的形貌调控及其对药物/基因传递体系的影响[J]. 化学进展, 2016, 28(1): 67-74.
[15] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.