English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 36-46 DOI: 10.7536/PC161214 前一篇   后一篇

• 综述 •

基于DNA纳米结构的传感界面调控及生物检测应用

叶德楷, 左小磊*, 樊春海*   

  1. 中国科学院上海应用物理研究所物理生物学研究室 上海光源生物成像中心 上海 201800
  • 收稿日期:2016-12-08 修回日期:2016-12-24 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 左小磊, 樊春海 E-mail:zuoxiaolei@sinap.ac.cn;fchh@sinap.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21422508)资助

DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection

Dekai Ye, Xiaolei Zuo*, Chunhai Fan*   

  1. Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received:2016-12-08 Revised:2016-12-24 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21422508).
生物传感技术在环境、安全和医学诊断等应用中具有重要意义。如何精确调控自组装界面上生物识别探针与界面的相互作用来提高生物传感的性能则是其中的关键问题。常规界面组装过程中,DNA等生物分子往往在界面形成非均一的自组装层,分子结合能量壁垒高,识别效率低。我们通过构建有序DNA纳米结构,发展了纳米尺度精确调控界面性质的方法。通过在界面上形成以熵驱动主导的均匀自组装层,增加探针分子间的有效距离,并通过精确调控界面上DNA纳米结构的尺寸,显著提高界面DNA杂交效率与速率。我们在DNA四面体上修饰不同的生物识别分子(DNA、抗体、核酸适配体等),可构建通用检测平台,实现对核酸、蛋白、小分子及细胞的高灵敏检测,并且在复杂样本中同样保持了优异的检测性能。在此基础上,我们将四面体三维结构探针应用于细胞内以及活体检测,研究了DNA四面体在细胞内的运输途径及靶向定位方式,并实现对细胞内ATP分布的传感成像及小鼠体内肿瘤组织的靶向成像,有望发展活体生物传感的新探针。
The biosensing technology plays an important role in environmental monitoring, safety control and medical diagnosis. Precise control of the interaction between bio-recognition probe and the interface is critical to improve the sensitivity, specificity and selectivity of biosensors. In a typical bioprobe immobilization, the heterogeneity of self-assembled monolayers on the surface increases the binding energy barrier and decreases the recognition efficiency and rate. We found that DNA nanostructures, such as tetrahedral DNA nanostructures (TDNs), could increase the homogeneity of self-assembled monolayers via enthalpy-entropy compensation, which enables precise regulation of interfacial property at the nanoscale. By regulating the intermolecular distance of bioprobes, the hybridization efficiency and hybridization rate of DNA probes can be improved significantly. The detection limit of DNA and microRNA can be pushed down to 10 aM limit. The detection limit of antigen detection can be improved to 100 pM and the detection limit of small molecule (cocaine) can be pushed to 33 nM. By using TDNs, we developed a universal detection platform for nucleic acids, proteins, small molecules and cells with superior detection sensitivity. To further use TDN probes in cells and in vivo, we explored the transport pathways of TDNs into the cell and directed their targeting location to specific organelles. We aim to develop DNA nanostructure-based bioprobes for intracellular and in-vivo imaging.

Contents
1 Introduction
2 Physicochemical perspectives on DNA immobilization: enthalpy-entropy compensation
3 DNA hybridization regime on DNA nanostructured biosensing interface
4 Biosensors with designed DNA nanostructures
4.1 Nucleic acids detection
4.2 Protein detection
4.3 Small molecules detection
4.4 In vivo detection
5 Conclusion and outlook

中图分类号: 

()
[1] Fan C, Plaxco K W, Heeger A J. Trends Biotechnol., 2005, 23:186.
[2] Kelley S O, Mirkin C A, Walt D R, Ismagilov R F, Toner M, Sargent E H. Nat. Nanotechnol., 2014, 9:969.
[3] Song S, Qin Y, He Y, Huang Q, Fan C, Chen H Y. Chem. Soc. Rev., 2010, 39:4234.
[4] Zhao Y, Chen F, Li Q, Wang L, Fan C. Chem. Rev., 2015, 115:12491.
[5] Shen J W, Li Y B, Gu H S, Xia F, Zuo X L. Chem. Rev., 2014, 114:7631.
[6] Li D, Song S, Fan C. Acc. Chem. Res., 2010, 43:631.
[7] Fan C, Wang S, Hong J W, Bazan G C, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:6297.
[8] Fan C, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:9134.
[9] Fan C, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2002, 124:5642.
[10] Zuo X, He S, Li D, Peng C, Huang Q, Song S, Fan C. Langmuir, 2010, 26:1936.
[11] Fan C H, Li G X, Zhu D X. Chinese J. Chem., 2000, 18:115.
[12] Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C. J. Am. Chem. Soc., 2012, 134:11876.
[13] Pei H, Li J, Lv M, Wang J, Gao J, Lu J, Li Y, Huang Q, Hu J, Fan C. J. Am. Chem. Soc., 2012, 134:13843.
[14] Peng T, Qin W, Wang K, Shi J, Fan C, Li D. Anal. Chem., 2015, 87:9403.
[15] Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Angew. Chem. Int. Ed., 2013, 52:11542.
[16] Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G. Angew. Chem. Int. Ed., 2014, 53:8338.
[17] Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Angew. Chem. Int. Ed., 2009, 48:8670.
[18] Yan J, Hu C, Wang P, Zhao B, Ouyang X, Zhou J, Liu R, He D, Fan C, Song S. Angew. Chem. Int. Ed., 2015, 54:2431.
[19] Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C. Angew. Chem. Int. Ed., 2016, 55:8036.
[20] Zhang Y, Li Q, Guo L, Huang Q, Shi J, Yang Y, Liu D, Fan C. Angew. Chem. Int. Ed., 2016, 55:12450.
[21] Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y T, Fan C. Angew. Chem. Int. Ed., 2011, 50:11994.
[22] Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen J D, Hsu B B, Heeger A J, Plaxco K W. Proc. Natl. Acad. Sci. U.S.A., 2010, 107:10837.
[23] Deng W P, Dou Y Z, Song P, Xu H, Aldalbahi A, Chen N, El-Sayed N N, Gao J M, Lu J X, Song S P, Zuo X L. J. Electroanal. Chem., 2016, 777:117.
[24] Yang F, Zuo X, Li Z, Deng W, Shi J, Zhang G, Huang Q, Song S, Fan C. Adv. Mater., 2014, 26:4671.
[25] Kang D, Zuo X, Yang R, Xia F, Plaxco K W, White R J. Anal. Chem., 2009, 81:9109.
[26] Zhang H, Jia S, Lv M, Shi J, Zuo X, Su S, Wang L, Huang W, Fan C, Huang Q. Anal. Chem., 2014, 86:4047.
[27] Wang S P, Cai X Q, Wang L H, Li J, Li Q, Zuo X L, Shi J Y, Huang Q, Fan C H. Chem. Sci., 2016, 7:2722.
[28] Kang D, White R J, Xia F, Zuo X L, Vallee-Belisle A, Plaxco K W. NPG Asia Mater., 2012, 4:e1.
[29] Soleymani L, Fang Z C, Lam B, Bin X M, Vasilyeva E, Ross A J, Sargent E H, Kelley S O. ACS Nano, 2011, 5:3360.
[30] Bin X M, Sargent E H, Kelley S O. Anal. Chem., 2010, 82:5928.
[31] Lam B, Das J, Holmes R D, Live L, Sage A, Sargent E H, Kelley S O. Nat. Commun., 2013, 4:2001.
[32] Soleymani L, Fang Z C, Sargent E H, Kelley S O. Nat. Nanotechnol., 2009, 4:844.
[33] Zhu D, Chao J, Pei H, Zuo X, Huang Q, Wang L, Huang W, Fan C. ACS Appl. Mater. Inter., 2015, 7:11047.
[34] Zhu D, Pei H, Chao J, Su S, Aldalbahi A, Rahaman M, Wang L, Wang L, Huang W, Fan C, Zuo X. Nanoscale, 2015, 7:18671.
[35] Zhu D, Pei H, Yao G, Wang L, Su S, Chao J, Wang L, Aldalbahi A, Song S, Shi J, Hu J, Fan C, Zuo X. Adv. Mater., 2016, 28:6860.
[36] Zhu D, Song P, Shen J, Su S, Chao J, Aldalbahi A, Zhou Z, Song S, Fan C, Zuo X, Tian Y, Wang L, Pei H. Anal. Chem., 2016, 88:4949.
[37] Zhu D, Zuo X, Fan C. Sci. China-Chem., 2015, 45:1214.
[38] Lu N, Pei H, Ge Z, Simmons C R, Yan H, Fan C. J. Am. Chem. Soc., 2012, 134:13148.
[39] Chen X Q, Zhou G B, Song P, Wang J J, Gao J M, Lu J X, Fan C H, Zuo X L. Anal. Chem., 2014, 86:7337.
[40] Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew. Chem. Int. Ed., 2015, 54:2151.
[41] Vallee-Belisle A, Ricci F, Plaxco K W. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:13802.
[42] Xia F, White R J, Zuo X, Patterson A, Xiao Y, Kang D, Gong X, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2010, 132:14346.
[43] Xia F, Zuo X, Yang R, White R J, Xiao Y, Kang D, Gong X, Lubin A A, Vallee-Belisle A, Yuen J D, Hsu B Y, Plaxco K W. J. Am. Chem. Soc., 2010, 132:8557.
[44] Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. J. Am. Chem. Soc., 2007, 129:1042.
[45] Zuo X, Xiao Y, Plaxco K W. J. Am. Chem. Soc., 2009, 131:6944.
[46] Cash K J, Heeger A J, Plaxco K W, Xiao Y. Anal. Chem., 2009, 81:656.
[47] Hsieh K, White R J, Ferguson B S, Plaxco K W, Xiao Y, Soh H T. Angew. Chem. Int. Ed., 2011, 50:11176.
[48] Xiao Y, Lubin A A, Heeger A J, Plaxco K W. Angew. Chem. Int. Ed., 2005, 44:5456.
[49] Xiao Y, Uzawa T, White R J, Demartini D, Plaxco K W. Electroanalysis, 2009, 21:1267.
[50] Swensen J S, Xiao Y, Ferguson B S, Lubin A A, Lai R Y, Heeger A J, Plaxco K W, Soh H T. J. Am. Chem. Soc., 2009, 131:4262.
[51] Xiao Y, Lou X, Uzawa T, Plakos K J, Plaxco K W, Soh H T. J. Am. Chem. Soc., 2009, 131:15311.
[52] Xiao Y, Piorek B D, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2005, 127:17990.
[53] Xiao Y, Qu X, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2007, 129:11896.
[54] Xiao Y, Rowe A A, Plaxco K W. J. Am. Chem. Soc., 2007, 129:262.
[55] White R J, Phares N, Lubin A A, Xiao Y, Plaxco K W. Langmuir, 2008, 24:10513.
[56] Xiao Y, Lai R Y, Plaxco K W. Nat. Protoc., 2007, 2:2875.
[57] Zhu Y, Earnest T, Huang Q, Cai X, Wang Z, Wu Z, Fan C. Adv. Mater., 2014, 26:7889.
[58] Su S, Wu Y, Zhu D, Chao J, Liu X, Wan Y, Su Y, Zuo X, Fan C, Wang L. Small, 2016, 12:3794.
[59] Yao G, Li J, Chao J, Pei H, Liu H, Zhao Y, Shi J, Huang Q, Wang L, Huang W, Fan C. Angew. Chem. Int. Ed., 2015, 54:2966.
[60] Liu G, Sun C, Li D, Song S, Mao B, Fan C, Tian Z. Adv. Mater., 2010, 22:2148.
[61] Wang F, Fan C. Nat. Chem., 2016, 8:738.
[62] Zheng J P, Birktoft J J, Chen Y, Wang T, Sha R J, Constantinou P E, Ginell S L, Mao C D, Seeman N C. Nature, 2009, 461:74.
[63] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310:1661.
[64] Han D R, Pal S, Nangreave J, Deng Z T, Liu Y, Yan H. Science, 2011, 332:342.
[65] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C. ACS Nano, 2011, 5:8783.
[66] Li J, Fan C, Pei H, Shi J, Huang Q. Adv. Mater., 2013, 25:4386.
[67] Chen N, Li J, Song H, Chao J, Huang Q, Fan C. Acc. Chem. Res., 2014, 47:1720.
[68] Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. ACS Appl. Mater. Inter., 2016, 8:4378.
[69] Wei M, Chen N, Li J, Yin M, Liang L, He Y, Song H, Fan C, Huang Q. Angew. Chem. Int. Ed., 2012, 51:1202.
[70] Wei M, Li J, Chen N, Huang Q, Fan C. Chinese Sci. Bull., 2014, 59:133.
[71] Chen N, Wei M, Sun Y, Li F, Pei H, Li X, Su S, He Y, Wang L, Shi J, Fan C, Huang Q. Small, 2014, 10:368.
[72] Pei H, Zuo X, Zhu D, Huang Q, Fan C. Acc. Chem. Res., 2014, 47:550.
[73] Abi A, Lin M H, Pei H, Fan C H, Ferapontova E E, Zuo X L. ACS Appl. Mater. Inter., 2014, 6:8928.
[74] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22:4754.
[75] Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Anal. Chem., 2014, 86:2124.
[76] Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q. Anal. Chem., 2014, 86:2285.
[77] Song P, Li M, Shen J, Pei H, Chao J, Su S, Aldalbahi A, Wang L, Shi J, Song S, Wang L, Fan C, Zuo X. Anal. Chem., 2016, 88:8043.
[78] Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C. Anal. Chem., 2011, 83:7418.
[79] Pei H, Liang L, Yao G, Li J, Huang Q, Fan C. Angew. Chem. Int. Ed., 2012, 51:9020.
[80] Pei H, Wan Y, Li J, Hu H, Su Y, Huang Q, Fan C. Chem. Commun., 2011, 47:6254.
[81] Wen Y, Liu G, Pei H, Li L, Xu Q, Liang W, Li Y, Xu L, Ren S, Fan C. Methods, 2013, 64:276.
[82] Pei H, Zuo X L, Pan D, Shi J Y, Huang Q, Fan C H. NPG Asia Mater., 2013, 5:e51.
[83] Wen Y, Pei H, Shen Y, Xi J, Lin M, Lu N, Shen X, Li J, Fan C. Sci. Rep., 2012, 2:867.
[84] Bracha D, Karzbrun E, Shemer G, Pincus P A, Bar-Ziv R H. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:4534.
[85] Gong P, Levicky R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105:5301.
[86] Guan J J, Lee J. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:18321.
[87] Opdahl A, Petrovykh D Y, Kimura-Suda H, Tarlov M J, Whitman L J. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:9.
[88] Lao R, Song S, Wu H, Wang L, Zhang Z, He L, Fan C. Anal. Chem., 2005, 77:6475.
[89] Zhang J, Lao R, Song S, Yan Z, Fan C. Anal. Chem., 2008, 80:9029.
[90] Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C. J. Am. Chem. Soc., 2006, 128:8575.
[91] Campuzano S, Kuralay F, Lobo-Castanon M J, Bartosik M, Vyavahare K, Palecek E, Haake D A, Wang J. Biosens. Bioelectron., 2011, 26:3577.
[92] Liu G, Wan Y, Gau V, Zhang J, Wang L, Song S, Fan C. J. Am. Chem. Soc., 2008, 130:6820.
[93] Xiao Y, Lubin A A, Baker B R, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:16677.
[94] Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H. ACS Appl. Mater. Inter., 2015, 7:8834.
[95] Li Z, Zhao B, Wang D, Wen Y, Liu G, Dong H, Song S, Fan C. ACS Appl. Mater. Inter., 2014, 6:17944.
[96] Wang D, Fu Y, Yan J, Zhao B, Dai B, Chao J, Liu H, He D, Zhang Y, Fan C, Song S. Anal. Chem., 2014, 86:1932.
[97] Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X. Anal. Chem., 2014, 86:7843.
[98] Ge Z, Fan C, Yan H. Chinese Sci. Bull., 2014, 59:146.
[99] Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Nat. Protoc., 2016, 11:1244.
[100] Chen S, Dou Y, Zhao Z, Li F, Su J, Fan C, Song S. Anal. Chem., 2016, 88:3476.
[101] Wen Y L, Wang L L, Xu L, Li L Y, Ren S Z, Cao C M, Jia N Q, Aldalbahi A, Song S P, Shi J Y, Xia J Y, Liu G, Zuo X L. The Analyst, 2016, 141:5304.
[102] Chao J, Zhu D, Zhang Y, Wang L, Fan C. Biosens. Bioelectron., 2016, 76:68.
[103] Li Y, Wen Y, Wang L, Liang W, Xu L, Ren S, Zou Z, Zuo X, Fan C, Huang Q, Liu G, Jia N. Biosens. Bioelectron., 2015, 67:364.
[104] Wan Y, Wang P, Su Y, Zhu X, Yang S, Lu J, Gao J, Fan C, Huang Q. Biosens. Bioelectron., 2014, 55:231.
[105] Wang P, Wan Y, Deng S, Yang S, Su Y, Fan C, Aldalbahi A, Zuo X. Biosens. Bioelectron., 2016, 86:536.
[106] Deng W, Xu B, Hu H, Li J, Hu W, Song S, Feng Z, Fan C. Sci. Rep., 2013, 3:1789.
[107] Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R. Nature, 2005, 435:834.
[108] Pritchard C C, Cheng H H, Tewari M. Nat. Rev. Genet., 2012, 13:358.
[109] Qin D, Xia Y N, Whitesides G M. Nat. Protoc., 2010, 5:491.
[110] Nam J M, Thaxton C S, Mirkin C A. Science, 2003, 301:1884.
[111] Shi J X, Zhang X E, Xie W H, Zhou Y F, Zhang Z P, Deng J Y, Cass A E G, Zhang Z L, Pang D W, Zhang C G. Anal. Chem., 2004, 76:632.
[112] Shao W H, Zhang X E, Liu H, Zhang Z P. Bioconjugate Chem., 2000, 11:822.
[113] Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C. Angew. Chem. Int. Ed., 2014, 53:7745.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[4] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[5] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[6] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[9] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[10] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[11] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[12] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[13] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.