English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1515-1527 DOI: 10.7536/PC160631 前一篇   后一篇

• 综述与评论 •

三苯基膦氧基团在合成高性能有机电致发光材料中的应用

姜鸿基*, 张庆维   

  1. 南京邮电大学 信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子与信息显示协同创新中心 南京 210023
  • 收稿日期:2016-06-01 修回日期:2016-09-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 姜鸿基 E-mail:iamhjjiang@njupt.edu.cn
  • 基金资助:
    国家重大科学研究计划(No.2012CB933301),国家自然科学基金项目(No.21574068),教育部创新团队(No.IRT1148),江苏高校优势学科建设工程(No.YX03001),江苏省高校自然科学基金面上项目(No.15KJB150022)和江苏政府留学奖学金资助

Applications of Triphenyl Phosphine Oxide Derivative-Based Chromophores in the Synthesis of Organic Electroluminescent Materials

Jiang Hongji*, Zhang Qingwei   

  1. Key Laboratory of Organic Electronics and Information Displays, National Jiangsu Synergetic Innovation Center for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Received:2016-06-01 Revised:2016-09-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    This work was supported by the National Basic Research Program of China (No.2012CB933301), the National Natural Science Foundation of China (No.21574068), the Ministry of Education of China (No.IRT1148), the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.YX03001), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.15KJB150022) and the Jiangsu Government Scholarship for Overseas Studies.
有机电致发光技术在通讯、信息、显示和照明等领域显现出巨大的商业应用前景, 十几年来一直是光电信息领域的研究热点之一。相对于无机电致发光材料,有机电致发光材料具有许多优点。近年来,三苯基膦氧基团在合成高性能有机电致发光材料方面的研究吸引了大批研究者的关注。由于磷原子自身性质,可以形成5个共价键,所以膦氧基团极易和其他基团连接形成以其为核的衍生物。由于氧原子具有很强的电负性,这就使膦氧结构高度极化并具有强的吸电子性。吸电子的膦氧基团连接苯环形成的三苯基膦氧单元也具有较强的吸电子性,其对所形成的化合物的能级结构也会产生明显影响。本文从材料合成的角度综述了三苯基膦氧基团在合成高性能有机电致发光材料中的应用方面所取得的最新研究进展,重点介绍了三苯基膦氧基团在合成高性能磷光二极管主体材料、电子传输材料和单分子电致发光材料等方面的应用。最后讨论了三苯基膦氧基团在上述领域应用过程中所存在的问题和功能拓展方向,并对下一步需要研究的热点问题作了展望。
The organic electroluminescent (EL) technology, which has been the research focus in the field of electro-optical information, holds a wide range of potential applications in domains of communication, information, display, illumination, and so on. Organic EL materials have many advantages when compared with their inorganic counterparts. As a kind of rigid plane triphenyl compound with wide band gap and high flexibility to modify the molecule skeleton, the triphenyl phosphine oxide group with triangular pyramidal configuration has attracted broad attentions. In addition, this group with electron-deficient feature can polarize the molecule framework and promote electron-transporting ability of the obtained materials, which have shown good thermal stability, high triplet energy level values and relatively good device performance. In this regard, the triphenyl phosphine oxide group has been a key bridging chromophore in the synthesis of highly efficient host materials for phosphorescent organic light-emitting diodes, organic charge-transporting materials and single molecular EL light-emitting materials. In this review, the synthetic methods of the materials based on triphenyl phosphine oxide group are introduced. The applications of triphenyl phosphine oxide group-based bridging chromophores in the synthesis of organic EL materials are discussed in detail. Finally, some issues to be addressed and hotspots to be further investigated are also pointed out.

Contents
1 Introduction
2 Unique characteristics of triphenyl phosphine oxide-based segments and their applications in electroluminescent materials
3 General synthetic route to triphenyl phosphine oxide-based segments
4 Applications of triphenyl phosphine oxide-based segments in the synthesis of host materials for PhOLEDs
4.1 Host materials for red light PhOLEDs
4.2 Host materials for green light PhOLEDs
4.3 Host materials for blue light PhOLEDs
4.4 Host materials for white light PhOLEDs
5 Charge-transporting materials based on triphenyl phosphine oxide derivatives
6 Triphenyl phosphine oxide derivative-bridged single molecular electroluminescent materials
7 Conclusion

中图分类号: 

()
[1] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51(12):913.
[2] Grimsdale A C, Chan K L, Martin R E, Jokisz P G, Holmes A B. Chem.Rev., 2009, 109(3):897.
[3] Adachi C, Baldo M A, Forrest S R, Thompson M E. Appl. Phys. Lett., 2000, 77(6):904.
[4] Baldo M A, Lamansky S, Burrows P E, Thompson M E, Forrest S R. Appl. Phys. Lett., 1999, 75(1):4.
[5] Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H E, Adachi C, Burrows P E, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2001, 123(18):4304.
[6] Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R. Nature, 2006, 440(7086):908.
[7] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K. Nature, 2009, 459(7244):234.
[8] Baldo M A, Obrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698):151.
[9] Su S J, Sasabe H, Takeda T, Kido J. Chem. Mater., 2008, 20(5):1691.
[10] Chaskar A, Chen H F, Wong K T. Adv. Mater., 2011, 23(34):3876.
[11] Tsai M H, Lin H W, Su H C, Ke T H, Wu C C, Tang F C, Liao Y L, Wong K T, Wu C I. Adv. Mater., 2006, 18(9):1216.
[12] Jiang H J. Asian. J. Org. Chem., 2014, 3(2):102.
[13] Ren X, Li J, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Chem. Mater., 2004, 16(23):4743.
[14] Holmes R J, Andrade B W D, Forrest S R, Ren X, Li J, Thompson M E. Appl. Phys. Lett., 2003, 83(18):3818.
[15] Tao Y, Wang Q, Ao L, Zhong C, Yang C, Qin J, Ma D. J Phys. Chem. C, 2009, 114(1):601.
[16] Rothmann M M, Haneder S, Como E D, Lennartz C, Schildknecht C, Strohriegl P. Chem. Mater., 2010, 22(7):2403.
[17] Son K, Yahiro M, Imai M T, Yoshizaki H, Adachi C. Chem Mater., 2008, 20(13):4439.
[18] Tao Y, Wang Q, Shang Y, Yang C, Ao L, Qin J, Ma D, Shuai Z. Chem. Commun., 2009, 1(1):77.
[19] Tao Y, Wang Q, Yang C, Wang Q, Zhang Z, Zou T, Qin J, Ma D. Angew. Chem. Int. Ed., 2008, 47(42):8104.
[20] Kim M K, Kwon J, Kwon T H, Hong J I. New. J. Chem., 2010, 34(7):1317.
[21] Jeon S O, Yook K S, Joo C W, Lee J Y. Adv. Funct. Mater., 2009, 19(22):3644.
[22] Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K. J. Am. Chem. Soc., 2012, 134(9):4080.
[23] Baba K, Tobisu M, Chatani N. Angew. Chem. Int. Ed., 2013, 52(45):11892.
[24] Wang K, Wang S P, Wei J B, Chen S Y, Liu D, Liu Y, Wang Y. J. Mater. Chem. C, 2014, 2(33):6817.
[25] Zhang Q W, Fang D, Jiang H J, Zhang X W, Zhang H M. Org. Electron., 2015, 27:173.
[26] Liu X K, Zheng C J, Lo M F, Xiao J, Lee C S, Fung M K, Zhang X H. Chem. Commun., 2014, 50(16):2027.
[27] Thiery S, Tondelier D, Geffroy B, Jacques E, Robin M, Mtivier R, Jeannin O, Berthelot J R, Poriel C. Org. Lett., 2015, 17(19):4682.
[28] Han C M, Zhu L P, Li J, Zhao F C, Zhang Z, Xu H, Deng Z P, Ma D G, Yan P F. Adv. Mater., 2014, 26(41):7070.
[29] Burrows P E, Padmaperuma A B, Sapochak L S, Djurovich P, Thompson M E. Appl. Phys. Lett., 2006, 88(18):183503.
[30] Jeon S O, Lee J Y. J. Mater. Chem., 2012, 22(10):4233.
[31] Kim D, Salman S, Coropceanu V, Salomon E, Padmaperuma A B, Sapochak L S, Kahn A, Bredas J L. Chem. Mater., 2010, 22(1):247.
[32] Sapochak L S, Padmaperuma A B, Cai X, Male J L, Burrows P E. J. Phys. Chem. C, 2008, 112(21):7989.
[33] Cai X, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E. Appl. Phys. Lett., 2008, 92(8):083308.
[34] Jeon S O, Yook K S, Joo C W, Lee J Y. Adv. Mater., 2010, 22(16):1872.
[35] Son H S, Seo C W, Lee J Y. J. Mater. Chem., 2011, 21(15):5638.
[36] Ding J, Wang Q, Zhao L, Ma D, Wang L, Jing X, Wang F. J. Mater. Chem., 2010, 20(37):8126.
[37] Chou H H, Cheng C H. Adv. Mater., 2010, 22(22):2468.
[38] Holmes R J, Forrest S R, Tung Y J, Kwong R C, Brown J J, Garon S, Thompson M E. Appl. Phys. Lett., 2003, 82(15):2422.
[39] Jeon S O, Jang S E, Son H S, Lee J Y. Adv. Mater., 2011, 23(12):1436.
[40] Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W, Chao I, Liu S, Wang J K. Adv. Funct. Mater., 2007, 17(12):1887.
[41] Yook K S, Lee J Y. Org. Electron., 2011, 12(10):1711.
[42] Jeon S O, Lee J Y. Tetrahedron, 2010, 66(36):7295.
[43] Han C M, Zhu L P, Zhao F C, Zhang Z, Wang J Z, Deng Z P, Xu H, Li J, Ma D G, Yan P F. Chem. Commun., 2014, 50(20):2670.
[44] Cui L S, Liu Y, Li Q, Jiang Z Q, Liao L S. Org. Electron., 2014, 15(7):1368.
[45] Liu H, Cheng G, Hu D H, Shen F Z, Lv Y, Sun G N, Yang B, Lu P, Ma Y G. Adv. Funct. Mater., 2012, 22(13):2830.
[46] Liu H, Bai Q, Yao L, Hu D H, Tang X Y, Shen F Z, Zhang H H, Gao Y, Lu P, Yang B. Adv. Funct. Mater., 2014, 24(37):5881.
[47] 毛炳雪(Mao B X), 张大鹏(Zhang D P),华晓阳(Hua X Y),姜鸿基(Jiang H J),陈润锋(Chen R F),邓先宇(Deng X Y).化学进展(Progress in Chemistry), 2010, 22(12):2353.
[48] Padmaperuma A B, Sapochak L S, Burrows P E. Chem. Mater., 2006, 18(9):2389.
[49] Son H S, Lee J Y. Org. Electron., 2011, 12(6):1025.
[50] Jang S E, Joo C W, Lee J Y. Thin Solid Films, 2010, 519(2):906.
[51] Jeon S O, Yook K S, Joo C W, Son H S, Lee J Y. Thin Solid Films, 2010, 518(14):3716.
[52] Jang S E, Jang C W, Jeon S O, Yook K S, Lee J Y. Org. Electron., 2010, 11(6):1059.
[53] Yu D, Zhao Y, Xu H, Han C, Ma D, Deng Z, Gao S, Yan P. Chem.-Eur. J., 2011, 17(9):2592.
[54] Hsu F M, Chien C H, Shu C F, Lai C H, Hsieh C C, Wang K W, Chou P T. Adv. Funct. Mater., 2009, 19(17):2834.
[55] Wu J, Wu S X, Wu Y, Kan Y H, Geng Y, Su Z M. Phys. Chem. Chem. Phys., 2013, 15(7):2351.
[56] Ding L, Dong S C, Jiang Z Q, Chen H, Liao L S. Adv. Funct. Mater., 2015, 25(4):645.
[57] Yu D H, Zhao F C, Han C M, Xu H, Li J, Zhang Z, Deng Z P, Ma D G, Yan P F. Adv. Mater., 2012, 24(4):509.
[58] Zhang Z, Zhang Z S, Chen R F, Jia J L, Han C M, Zheng C, Xu H, Yu D H, Zhao Y, Yan P F, Liu S Y, Huang W. Chem.-Eur. J., 2013, 19(29):9549.
[59] Ding D X, Zhang Z, Wei Y, Yan P F, Xu H. J. Mater. Chem. C, 2015, 3(43):11385.
[60] Han C M, Zhao F C, Zhang Z, Zhu L P, Xu H, Li J, Ma D G, Yan P F. Chem. Mater., 2013, 25(24):4966.
[61] Gong S L, Chang Y L, Wu K L, White R, Lu Z H, Song D T, Yang C L. Chem. Mater., 2014, 26(3):1463.
[62] Zhuang J Y, Li W F, Su W M, Zhou M, Cui Z. New. J. Chem., 2014, 38(2):650.
[63] Lee C W, Lee J Y. Adv. Mater., 2013, 25(38):5450.
[64] Lee J H, Cheng S H, Yoo S J, Shin H, Chang J H, Wu C, Wong K T, Kim J J. Adv. Funct. Mater., 2015, 25(3):361.
[65] Sun M Z, Zhu L P, Kan W J, Wei Y, Ma D G, Fan X F, Huang W, Xu H. J. Mater. Chem. C, 2015, 3(36):9469.
[66] Han C M, Zhang Z S, Xu H, Yue S Z, Li J, Yan P R, Deng Z P, Zhao Y, Yan P F, Liu S Y. J. Am. Chem. Soc., 2012, 34(46):19179.
[67] Huang H, Yang X, Wang Y X, Pan B, Wang L, Chen J S, Ma D G, Yang C L. Org. Electron., 2013, 14(10):2573.
[68] Zhuang J Y, Su W M, Wu W C, Li W F, Shen Q, Zhou M. Tetrahedron, 2013, 69(43):9038.
[69] Fan C C, Duan C B, Wei Y, Ding D X, Xu H, Huang W. Chem. Mater., 2015, 27(14):5131.
[70] Wang B, Lv X L, Pan B, Tan J H, Jin J J, Wang L. J. Mater. Chem. C, 2015, 3(42):11192.
[71] Jia J, Zhu L, Wei Y, Wu Z, Xu H, Ding D, Chen R, Ma D, Huang W. J. Mater. Chem. C, 2015, 3(19):4890.
[72] Shao S Y, Ding J Q, Wang L X. Jing X B. Wang F S. J. Am. Chem. Soc., 2012, 134(37):15189.
[73] Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. J. Am. Chem. Soc., 2012, 134(50):20290.
[74] Liu C, Li Y H, Li Y F, Yang C L, Wu H B, Qin J G, Cao Y. Chem. Mater., 2013, 25(16):3320.
[75] Mallesham G, Swetha C, Niveditha S, Mohanty M E, Babu N J, Kumar A, Bhanuprakash K, Rao V J. J. Mater. Chem. C, 2015, 3(6):1208.
[76] Joly D, Bouit P A, Hissler M. J. Mater. Chem. C, 2016, 4(17):3686.
[77] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492:234.
[78] Shao S Y, Ding J Q, Ye T L, Xie Z Y, Wang L X, Jing X B, Wang F S. Adv. Mater., 2011, 23(31):3570.
[79] Duan C B, Li J, Han C M, Ding D X, Yang H, Wei Y, Xu H. Chem. Mater., 2016, 28(16):5667.
[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[3] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[4] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[5] 刘杰, 江漫, 梅咏梅, 吴占超*, 匡少平. 白光发光二极管用单一基质白光荧光粉[J]. 化学进展, 2013, 25(12): 2068-2079.
[6] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.
[7] 马治军, 雷霆, 裴坚*, 刘晨江*. 蓝色有机电致磷光主体材料[J]. 化学进展, 2013, 25(06): 961-974.
[8] 方云霞, 方晓明*, 张正国. 基于纳米ZnO的白光LED[J]. 化学进展, 2012, 24(08): 1477-1483.
[9] 张驰, 刘治田*, 沈陟, 刘菁. 聚合物发光电化学池[J]. 化学进展, 2012, 24(07): 1359-1367.
[10] 周丽霞, 刘淑娟, 赵强, 凌启淡, 黄维. 基于离子型铱配合物的发光电化学池[J]. 化学进展, 2011, 23(9): 1871-1882.
[11] 密保秀, 王海珊, 高志强, 王旭鹏, 陈润锋, 黄维. 小分子有机电致发光器件和材料的研究及应用[J]. 化学进展, 2011, 23(01): 136-152.
[12] 陶然, 乔娟, 段炼, 邱勇. 蓝色磷光有机发光材料[J]. 化学进展, 2010, 22(12): 2255-2267.
[13] 毛炳雪, 张大鹏, 华晓阳, 姜鸿基, 陈润锋, 邓先宇. 芴类蓝光生色团在合成有机电致发光材料中的应用[J]. 化学进展, 2010, 22(12): 2353-2376.
[14] 安众福 陈润锋 史慧芳 马琮 石乃恩 黄维. 联萘酚衍生物的光电功能及其应用*[J]. 化学进展, 2010, 22(10): 1973-1982.
[15] 曹湖军 雷钢铁 汪磊 胡时光 张天静. 有机金属配合物电子传输材料*  [J]. 化学进展, 2010, 22(08): 1575-1582.