English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1658-1663 DOI: 10.7536/PC160701 前一篇   后一篇

• 综述与评论 •

跨越微观-宏观组装的桥梁:浓乳液聚合技术的应用

冯燕燕, 金明, 万德成*   

  1. 同济大学材料科学与工程学院 上海 201804
  • 收稿日期:2016-07-01 修回日期:2016-09-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 万德成 E-mail:wandecheng@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51273149,51573138)资助

A Bridge Spanning Microscopic to Macroscopic Assembly: Application of the Technique of Polymerization of Concentrated Emulsion

Feng Yanyan, Jin Ming, Wan Decheng*   

  1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • Received:2016-07-01 Revised:2016-09-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51273149, 51573138).
利用浓乳液(也称高内相比乳液)聚合技术可以获得表面结构化通孔材料(polyHIPE),其独特之处是藉此可以实现纳米级两亲体在宏观尺度上的表面有序组装,且可规模化生产。早期的polyHIPE以小分子表面活性剂稳定,仅提供了一个多孔骨架,因为该表面活性剂易流失不能发挥表面功能基作用,而对惰性多孔骨架的后功能化往往较为繁琐。近年来,这方面的突破包括:(1)新型的Pickering稳定剂能同时发挥功能基作用;(2)以难迁移的两亲性嵌段共聚物代替易流失的小分子表面活性剂直接获得改性表面;(3)以带有大量活泼官能团的树状两亲体作稳定剂,直接获得表面由活泼基团表达的polyHIPE;(4)以金属纳米粒子-树状两亲体复合粒子作为稳定剂,直接获得表面由金属纳米颗粒表达的多孔材料。这些材料具有的尺寸大、易回收、比表面较高、具有结构化表面和能反复使用的特点,使其在超分子水处理、低泄漏金属催化剂方面有可观应用前景。
Open-cellular materials can be obtained by polymerization of concentrated emulsion (high internal phase emulsion:HIPE) (polyHIPE), by which nano-objects can be assembled at macroscopic scale, resulting in ordered surface, and the material is producible in large scale. However, earlier polyHIPE technique just provides a porous framework because the small surfactants can just serve as stabilizers but cannot serve as a surface modifier. Postmodification of such polyHIPE usually appears to be tedious, arising from the inert matrix and the nature of a heterogeneous reaction. Recently, certain breakthrough in surface functionalization of polyHIPE occurs:(1) pickering stabilizing particles are tailored with surface chemistry; (2) amphiphilic block copolymers are used in place of the readily leachable small surfactant for direct preparation of surface-functionalized polyHIPE; (3) dendritic amphiphile based on hyperbranched polymers are used to one-pot prepare polyHIPE with active-groups dictated surface; (4)metal nanoparticle-dendritic amphiphile nanocomposites are used as stabilizer to prepare polyHIPE with metal nanoparticle-dictated surface. The polyHIPEs are of large size, ready separation and good recycling, high specific surface area, structured surface, thus are highly potential in supramolecular water treatment, low-leaching catalyst, etc.

Contents
1 Introduction
2 Direct surface functionalization of polyHIPE
3 Direct preparation of metal nanoparticle-decorated polyHIPE
4 Conclusion

中图分类号: 

()
[1] Cameron N R. Polymer, 2005, 46:1439.
[2] Cameron N R, Sherrington D C, Albiston L, Gregory D P. Colloid Polym. Sci., 1996, 274:592.
[3] Menner A, Bismarck A. Macromol. Symp., 2006, 242:19.
[4] Zhang H F, Cooper A I. Soft Matter, 2005, 1:107.
[5] Silverstein M S. Prog. Polym. Sci., 2014, 39:199.
[6] Wu D, Xu F, Sun B, Fu R, He H. Matyjaszewski K. Chem. Rev., 2012, 112:3959.
[7] Brun N, Ungureanu S, Deleuze H, Backov R. Chem. Soc. Rev., 2011, 40:771.
[8] Gokmen M T, Du Prez F E. Prog. Polym. Sci., 2012, 37:365.
[9] Kimmins S D, Cameron N R. Adv. Funct. Mater., 2011, 21, 211.
[10] 刘华蓉(Liu H R), 胡欣(Hu X),杨松(Yang S),苗伟峰(Miao W F),李梓超(Li Z C),张伟(Zhang W).化学进展(Progress in Chemistry), 2009, 21(4):672.
[11] Pieranski P. Phys. Rev. Lett., 1980, 45:569.
[12] Sevsek U, Krajnc P. React. Funct. Polym., 2012, 72:221.
[13] Barbetta A, Dentini M, Leandri L, Ferraris G, Coletta A, Bernabei M. React. Funct. Polym., 2009, 69:724.
[14] Yang S, Zeng L, Wang Y P, Sun X H, Sun P J, Liu H M, Nie C, Liu H R. Colloid. Polym. Sci., 2014, 292(10):2563.
[15] Krajnc P, Brown J F, Cameron N R. Organic Lett., 2002, 4(15):2497.
[16] Mai N A, Phuoc D N, Cam Q M, Sparrman T, Irgum K. J. Sep. Sci., 2009, 32:2608.
[17] Binks B P. Current Opinion. Colloid Interface Sci., 2002, 7:21.
[18] Zhang S, Chen J. Chem. Commun., 2009, 2217.
[19] Colver P J, Bon S A. Chem. Mater., 2007, 19, 1537.
[20] Gurevitch I, Silverstein M S. J. Polym. Sci. Part A:Poly. Chem., 2010, 48:1516.
[21] Gurevitch I, Silverstein M S. Macromolecules, 2011, 44:3398.
[22] Gurevitch I, Silverstein M S. Macromolecules, 2012, 45:6450.
[23] Ikem V O, Menner A, Horozov T S, Bismarck A. Adv. Mater., 2010, 22:3588.
[24] Luo Y W, Wang A N, Gao X. Colloid Polym. Sci., 2015, 293:1767.
[25] Viswanathan P, Johnson D W, Hurley C, Cameron N R, Battaglia G. Macromolecules, 2014, 47:7091.
[26] Zhou Y F, Huang W, Liu J Y, Zhu X Y, Yan D Y. Adv. Mater., 2010, 22:4567.
[27] Hu, X Z, Zhou L, Gao C. Colloid. Polym. Sci., 2011, 289(12):1299.
[28] Ye Y L, Wan D C, Du J, Jin M, Pu H T. J. Mater. Chem. A, 2015, 3:6297.
[29] Hu R X, Wan D C, Jin M. RSC Adv., 2016, 6:55682.
[30] Ye Y L, Jin M, Wan D C. J. Mater. Chem. A, 2015, 3:13519.
[31] Liu H H, Wan D C, Du J, Jin M. ACS Appl. Mater. Interface, 2015, 7:20885.
[32] Cameron N R,Sherrington D C. J. Mater. Chem., 1997, 7:2209.
[33] Manmen M, Choi S K, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37:2754.
[34] Li R Y, Zhang L B, Wang P. Nanoscale, 2015, 7:17167.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[11] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[12] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.