English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1406-1416 DOI: 10.7536/PC160414 前一篇   后一篇

• 综述与评论 •

酰胺电子等排体在先导化合物优化中的应用

梅以成, 杨宝卫*   

  1. 江苏食品药品职业技术学院药学院 淮安 223005
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 杨宝卫 E-mail:yangbaowei19870621@163.com

Application of Amide Bioisosteres in the Optimization of Lead Compounds

Mei Yicheng, Yang Baowei*   

  1. School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian 223005, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-09-15 Published:2016-08-16
生物电子等排体是指一类化合物或基团,这类物质拥有近似的分子形状和体积,类似的电子分布,并由此表现出相似的物理特性。作为激动剂或拮抗剂生物电子等排体能对相同的生化相关体系发挥作用,产生彼此互相相关的生物特性。药物结构中酰胺结构作为药效团和药物的重要组成部分被广泛应用。然而作为药物分子结构的重要组成部分,酰胺结构也存在着一些明显的缺点,包括代谢不稳定、代谢产物有毒和膜渗透性差等。为了克服这些缺点同时又想保持部分酰胺的特性,生物电子等排体替换是有效的方法之一。在先导化合物的优化过程中,通过酰胺生物电子等排体替换还能达到提高生物活性和靶点选择性、降低合成难度、扩展或突破知识产权限制等目的。本综述着重介绍了近五年来酰胺及其生物电子等排体在先导化合物优化过程中的应用。希望能对含有酰胺结构的先导化合物的优化提供新的思路,加速新药研发进程。
Bioisosteres are a class of compounds or groups,these compounds with similar molecular shapes or volume, similar electronic distribution, and similar physical properties. Bioisosteres play a role in the same related biochemical system as agonist or antagonist, which possessed in related biological activities. The amide structure can be an important part of drugs and a constituent of a pharmacophore. However, the presence of this moiety can also be responsible for some significant drawbacks about drug molecular, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the amide moiety, bioisosteric replacement of the amide moiety in lead compounds is an effective method. Through the amide bioisosteric replacements, other aims would be goal such as increasing the target potency and selectivity, developing new structures to expand or break through the patents and decreasing the difficulty of the synthesis of the compounds. This review focuses on the application of the replacement between amide and amide bioisosteres in the optimization of lead compounds in recent five years. We wish our review would offer a new thinking in the design and optimization of the compounds in the research and development of the new drugs.

Contents
1 Introduction
2 Amide bioisosteric replacement in lead compounds optimization
2.1 Increasing the target potency and selectivity
2.2 Improving the drug-likeness of the lead compounds
2.3 Developing new structures to expand or break through the patents
2.4 Decreasing the difficulty of the synthesis of the compounds
3 Conclusion

中图分类号: 

()
[1] Langmuir I. J. Am. Chem. Soc., 1919, 41:1543.
[2] Friedman H L. Influence of Isosteric Replacements upon Biological Activity. Washington DC:NAS-NRS, 1951. 295.
[3] Thornber C W. Chem. Soc. Rev., 1979, 8:563.
[4] Burger A. Medicinal Chemistry. 3rd ed. NY:Wiley-Interscience, 1970. 127.
[5] Burger A. Prog. Drug Res., 1991, 37:287.
[6] Ghose A K, Viswanadhan V N, Wendoloski J J. J. Comb. Chem., 1999, 1:55.
[7] Brandts J F, Halvorson H R, Brennan M. Biochemistry, 1975, 14:4953.
[8] D rwald F Z. Lead Optimization for Medicinal Chemists:Pharmacokinetic Properties of Functional Groups and Organic Compounds. Weinheim:Wiley-VCH, 2012. 605.
[9] Meanwell N A. J. Med. Chem., 2011, 54:2529.
[10] Patani G A, LaVoie E J. Chem. Rev., 1996, 96:3147.
[11] Gauthier J Y, Chauret N, Cromlish W, Desmarais S, Duong L T, Falgueyret J P, Kimmel D B, Lamontagne S, Léger S, LeRiche T, Li C S, Massé F, McKay D J, Nicoll-Griffith D A, Oballa R M, Palmer J T, Percival M D, Riendeau D, Robichaud J, Rodan G A, Rodan S B, Seto C, Thérien M, Truong V L, Venuti M C, Wesolowski G, Young R N, Zamboni R, Black W C. Bioorg. Med. Chem. Lett., 2008, 18:923.
[12] Sun S, Zhang Z, Kodumuru V, Pokrovskaia N, Fonarev J, Jia Q, Leung P Y, Tran J, Ratkay L G, McLaren D G, Radomski C, Chowdhury S, Fu J, Hubbard B, Winther M D, Dales N A. Bioorg. Med. Chem. Lett., 2014, 24:520.
[13] Vossenaar E R, Zendman A J, van Venrooij W J, Pruijn G J. BioEssays, 2003, 25:1106.
[14] Bicker K L, Anguish L, Chumanevich A A, Cameron M D, Cui X, Witalison E, Subramanian V, Zhang X, Chumanevich A P, Hofseth L J, Coonrod S A, Thompson P R. ACS. Med. Chem. Lett., 2012, 3:1081.
[15] Chumanevich A A, Causey C P, Knuckley B A, Jones J E, Poudyal D, Chumanevich A P, Davis T, Matesic L E, Thompson P R, Hofseth L J. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 300:G929.
[16] Subramanian V, Knight J S, Parelkar S, Anguish L, Coonrod S A, Kaplan M J, Thompson P R. J. Med. Chem., 2015, 58:1337.
[17] Pastore V, Sabatier L, Enrique A, Marder M, Bruno-Blanch L E. Bioorg. Med. Chem., 2013, 21:841.
[18] Yauch R L, Gould S E, Scales S J, Tang T, Tian H, Ahn C P, Marshall D, Fu L, Januario T, Kallop D, Nannini-Pepe M, Kotkow K, Marsters J C, Rubin L L, de Sauvage F J. Nature, 2008, 455:406.
[19] Yang B, Hird A W, Russell D J, Fauber B P, Dakin L A, Zheng X, Su Q, Godin R, Brassil P, Devereaux E, Janetka J W. Bioorg. Med. Chem. Lett., 2012, 22:4907.
[20] Staben S T, Siu M, Goldsmith R, Olivero A G, Do S, Burdick D J, Heffron T P, Dotson J, Sutherlin D P, Zhu B Y, Tsui V, Le H, Lee L, Lesnick J, Lewis C, Murray J M, Nonomiya J, Pang J, Prior W W, Salphati L, Rouge L, Sampath D, Sideris S, Wiesmann C, Wu P. Bioorg. Med. Chem. Lett., 2011, 21:4054.
[21] Staben S T, Blaquiere N, Tsui V, Kolesnikov A, Do S, Bradley E K, Dotson J, Goldsmith R, Heffron T P, Lesnick J, Lewis C, Murray J, Nonomiya J, Olivero A G, Pang J, Rouge L, Salphati L, Wei B, Wiesmann C, Wu P. Bioorg. Med. Chem. Lett., 2013, 23:897.
[22] 韩春燕(Han C Y), 李燕(Li Y), 刘刚(Liu G). 化学进展(Progress in Chemistry), 2008, 20(9):1335.
[23] Yang Z H, Li X, Ma H K, Zheng J Y, Zhen X C, Zhang X H. Bioorg. Med. Chem. Lett., 2014, 24:152.
[24] Brown M L, Aaron W, Austin R J, Chong A, Huang T, Jiang B, Kaizerman J A, Lee G, Lucas B S, McMinn D L, Orf J, Rong M, Toteva M M, Xu G, Ye Q, Zhong W, De Graffenreid M R, Wickramasinghe D, Powers J P, Hungate R, Johnson M G. Bioorg. Med. Chem. Lett., 2011, 21:5206.
[25] Isabel E, Mellon C, Boyd M J, Chauret N, Deschênes D, Desmarais S, Falgueyret J P, Gauthier J Y, Khougaz K, Lau C K, Léger S, Levorse D A, Li C S, Massé F, David Percival M, Roy B, Scheigetz J, Thérien M, Truong V L, Wesolowski G, Young R N, Zamboni R, Cameron Black W. Bioorg. Med. Chem. Lett., 2011, 21:920.
[26] Xia G, You X, Liu L, Liu H, Wang J, Shi Y, Li P, Xiong B, Liu X, Shen J. Eur. J. Med. Chem., 2013, 62:1.
[27] Nair A G, Wong M K C, Shu Y, Jiang Y, Jenh C H, Kim S H, Yang D Y, Zeng Q, Shao Y, Zawacki L G, Duo J, McGuinness B F, Carroll C D, Hobbs D W, Shih N Y, Rosenblum S B, Kozlowski J A. Bioorg. Med. Chem. Lett., 2014, 24:1085.
[28] Eastwood P, González J, Gómez E, Caturla F, Aguilar N, Mir M, Aiguadé J, Matassa V, Balagué C, Orellana A, Domínguez M. Bioorg. Med. Chem. Lett., 2011, 21:6253.
[29] Tan F, Morris P W, Skidgel R A, Erdos E G. J. Biol. Chem., 1993, 268:16631.
[30] Scarry S C, Rimoldi J M. Annu. Rep. Med. Chem., 2013, 48:91.
[31] Debenham J S, Graham T H, Verras A, Zhang Y, Clements M J, Kuethe J T, Madsen-Duggan C, Liu W, Bhatt U R, Chen D, Chen Q, Garcia-Calvo M, Geissler W M, He H, Li X, Lisnock J, Shen Z, Tong X, Tung E C,Wiltsie J, Xu S, Hale J J,Pinto S, Shen D M. Bioorg. Med. Chem. Lett., 2013, 23:6228.
[32] Graham T H, Shu M, Verras A, Chen Q, Garcia-Calvo M, Li X, Lisnock J, Tong X, Tung E C, Wiltsie J, Hale J J, Pinto S, Shen D M. Bioorg. Med. Chem. Lett., 2014, 24:1657.
[33] de la Fuente Revenga M, Fernandez-Saez N, Herrera-Arozamena C, Morales-Garcia J A, Alonso-Gil S, Perez-Castillo A, Caignard D H, Rivara S, Rodriguez-Franco M I. J. Med. Chem., 2015, 58:4998.
[34] Canales E, Carlson J S, Appleby T, Fenaux M, Lee J, Tian Y, Tirunagari N, Wong M, Watkins W J. Bioorg. Med. Chem. Lett., 2012, 22:4288.
[35] LaPlante S R, Bos M, Brochu C, Chabot C, Coulombe R, Gillard J R, Jakalian A, Poirier M, Rancourt J, Stammers T, Thavonekham B, Beaulieu P L, Kukolj G, Tsantrizos Y S. J. Med. Chem., 2014, 57:1845.
[36] Sun Z Y, Asberom T, Bara T, Bennett C, Burnett D, Chu I, Clader J, Cohen-Williams M, Cole D, Czarniecki M, Durkin J, Gallo G, Greenlee W, Josien H, Huang X, Hyde L, Jones N, Kzakevich I, Li H, Liu X, Lee J, Maccoss M, Mandal M B, McCracken T, Nomeir A, Mazzola R, Palani A, Parker E M, Pissarnitski D A, Qin J, Song L, Terracina G, Vicarel M, Voigt J, Xu R, Zhang L, Zhang Q, Zhao Z, Zhu X, Zhu Z. J. Med. Chem., 2012, 55:489.
[37] Hegen M, Gaestel M, Nickerson-Nutter C L, Lin L L, Telliez J B. J. Immunol., 2006, 177:1913.
[38] Xiao D, Zhu X,Sofolarides M, Degrado S, Shao N, Rao A, Chen X, Aslanian R, Fossetta J, Tian F, Trivedi P, Lundell D, Palani A. Bioorg. Med. Chem. Lett., 2014, 24:3609.
[39] Morandi F, Caselli E, Morandi S, Focia P J, Blazquez J, Shoichet B K, Prati F. J. Am. Chem. Soc., 2003, 125:685.
[40] Caselli E, Romagnoli C, Vahabi R, Taracila M A, Bonomo R A, Prati F. J. Med. Chem., 2015, 58:5445.
[1] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[2] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[3] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[4] 邓璐遥, 李少路, 秦一文, 胡云霞. 抗污染薄层复合聚酰胺膜的结构设计及改性策略[J]. 化学进展, 2020, 32(12): 1895-1907.
[5] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[6] 王茜茜, 戴璐, 介素云, 李伯耿. 长链脂肪族二元酸的合成及其在缩聚反应中的应用[J]. 化学进展, 2019, 31(1): 70-82.
[7] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[8] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[9] 张晓鹏*, 董淑祥, 范学森, 张贵生. 邻氨基苯甲酰胺类化合物的合成[J]. 化学进展, 2017, 29(11): 1351-1356.
[10] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[11] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[12] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
[13] 何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅. N-乙烯基己内酰胺的活性/可控自由基聚合[J]. 化学进展, 2016, 28(2/3): 328-336.
[14] 李东, 李文海, 董桂芳, 段炼, 王立铎. 有机光敏二极管的功能材料探索及其器件结构[J]. 化学进展, 2014, 26(12): 1889-1898.
[15] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.