English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1387-1396 DOI: 10.7536/PC160211 前一篇   后一篇

• 综述与评论 •

光控纳米载体在药物释放中的应用

龚兆翠1, 尹超1, 赵惠1, 卢晓梅2, 范曲立1*, 黄维2*   

  1. 1. 南京邮电大学 信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 南京 210023;
    2. 南京工业大学先进材料研究院 南京 211816
  • 收稿日期:2016-02-01 修回日期:2016-05-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 范曲立, 黄维 E-mail:iamqlfan@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2012CB933301,2012CB723402)和国家自然科学基金项目(No.21222404,51173080,21104033)资助

Light-Controlled Nanocarriers for Drug Release

Gong Zhaocui1, Yin Chao1, Zhao Hui1, Lu Xiaomei2, Fan Quli1*, Huang Wei2*   

  1. 1. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2016-02-01 Revised:2016-05-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    The work was supported by the National Basic Research Program of China (No. 2012CB933301, 2012CB723402), the National Natural Science Foundation of China (No. 21222404, 51173080, 21104033).
光敏感的纳米载体因其可从时间和空间上精确地控制药物的释放以实现对肿瘤的高效治疗,近年来逐渐成为生物医学领域的研究热点之一。本文综述了光敏感的纳米载体破裂从而释放出装载的药物的三种机理,主要包括:(1)光致异构化引发的纳米载体形态转变;(2)光反应引发的纳米载体降解;(3)光热引发的纳米载体破裂。本文简单介绍了这三种释放机理,例举了这三种释放机理所对应的光敏感材料,并阐述了其在药物运输、可控释放以及肿瘤治疗中的最新研究进展以及存在的问题,为光敏感纳米载体在生物体系中的应用提供参考,并对今后的发展作了展望。
The study of light-responsive nanocarriers is becoming one of the hottest topics in biomedical field due to their precise control of drug release for cancer therapy in spatiotemporal level. This contribution systematically reviewed three mechanisms for controlled drug release of photosensitive nanocarriers, including (1) photoisomerization caused morphological transformation of nanocarriers, (2) photoreaction caused degradation of nanocarriers, and (3) photothermal caused disruption of nanocarriers. This review briefly introduced the three mechanisms and their corresponding photosensitive materials. In addition, the recent research developments and problems remained of photosensitive materials for drug delivery and controlled release were pointed out. This review also provided useful references for photosensitive nanocarriers in biological applications and the research prospects were further proposed.

Contents
1 Introduction
2 Light-responsive nanocarriers for drug release
2.1 Photoisomerization-induced morphological trans-formation
2.2 Photoreaction-induced degradation
2.3 Photothermal-induced disruption
3 Conclusion

中图分类号: 

()
[1] Zhao Z M, Wang Y, Han J, Wang K L, Yang D, Yang Y H, Du Q, Song Y J, Yin X X. Int J. Nanomed., 2014, 9:5849.
[2] Xia X X, Wang M, Lin Y N, Xu Q B, Kaplan D L. Biomacromolecules, 2014, 15:908.
[3] Ma X, Zhao Y, Ng K W, Zhao Y L. Chem. Eur. J., 2013, 19:15593.
[4] Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013, 135:10542.
[5] Cheng R, Meng F H, Deng C, Klok H A, Zhong Z Y. Biomaterials, 2013, 34:3647.
[6] Lee S Y, Lee H K, In I, Park S Y. Eur. Polym. J., 2014, 57:1.
[7] Gupta M K, Martin J R, Werfel T A, Shen T W, Page J M, Duvall C L. J. Am. Chem. Soc., 2014, 136:14896.
[8] Guarnieri D, Biondi M, Yu H, Belli V, Falanga A P, Cantisani M, Galdiero S, Netti P A. Biotechnol. Bioeng., 2015, 112:601.
[9] Guo Y B, Zhang Y J, Li J F, Zhang Y, Lu Y F, Jiang X T, He X, Ma H J, An S, Jiang C. ACS Appl. Mater. Interfaces, 2015, 7:5444.
[10] Chiang C Y, Chu C C. Carbohyd. Polym., 2015, 119:18.
[11] Lattin J R, Pitt W G. J. Pharm. Sci-US, 2015, 104:1373.
[12] Frounchi M, Shamshiri S. J. Biomed. Mater. Res. A, 2015, 103A:1893.
[13] Bruno G, Geninatti T, Hood R L, Fine D, Scorrano G, Schmulen J, Hosali S, Ferrari M, Grattoni A. Nanoscale, 2015, 7:5240.
[14] Szyma Dn' ski W, Beierle J M, Kistemaker H A V, Velema W A, Feringa B L. Chem. Rev., 2013,113:6114.
[15] Liu G, Liu W, Dong C M. Polym. Chem., 2013, 4:3431.
[16] Fomina N, Sankaranarayanan J, Almutairi A. Adv. Drug Deliver Rev., 2012, 64:1005.
[17] Cao J, Huang S S, Chen Y Q, Li S W, Li X, Deng D W, Qian Z Y, Tang L P, Gu Y Q. Biomaterials, 2013, 34:6272.
[18] Ye L, Liu X Q, Ito K, Feng Z G. J. Mater. Chem. B., 2014, 2:5746.
[19] Son S, Shin E, Kim B S. Biomacromolecules, 2014, 15:628.
[20] Asadirad A M, Branda N R. J. Am. Chem. Soc., 2015, 137:2824.
[21] Chen C J, Liu G Y, Liu X S, Pang S P, Zhu C S, Lv L P, Ji J. Polym. Chem., 2011, 2:1389.
[22] Pangeni R, Sahni J K, Ali J, Sharma S, Baboota S, Opin E. Drug Deliv., 2014, 11:1285.
[23] Zhao Y. Macromolecules, 2012, 45:3647.
[24] Li J Z, Zhou Z, Ma L, Chen G X, Li Q F. Macromolecules, 2014, 47:5739.
[25] Li J, He L, Wang J, Zhang Z T, Shi J, Zhang X Z, Cao Y P, Chen Y. Express Polym. Lett., 2014, 8:143.
[26] Cao X F, Peng X W, Zhong L X, Sun R C. J. Agric. Food Chem., 2014, 62:10000.
[27] Paramonov S V, Lokshin V, Fedorova O A. J. Photoch. Photobio. C., 2011, 12:209.
[28] Achilleos D S, Vamvakaki M. Macromolecules, 2010, 43:7073.
[29] Hu D, Peng H, Niu Y L, Li Y F, Xia Y C, Li L, He J W, Liu X Y, Xia X N, Lu Y B, Xu W J. J. Polym. Sci. Pol. Chem., 2015, 53:750.
[30] Xing Q J, Li N J, Chen D Y, Sha W W, Jiao Y, Qi X X, Xu Q F, Lu J M. J. Mater. Chem. B., 2014, 2:1182.
[31] Chen L F, Wang W Q, Su B, Wen Y Q, Li C B, Zhou Y B, Li M Z, Shi X D, Du H W, Song Y L, Jiang L. ACS Nano, 2014, 8:744.
[32] Chen C J, Liu G Y, Shi Y T, Zhu C S, Pang S P, Liu X S, Ji J. Macromol. Rapid Commun., 2011, 32:1077.
[33] Liu G Y, Chen C J, Li D D, Wang S S, Ji J. J. Mater. Chem., 2012, 22:16865.
[34] Jin Q, Cai T J, Han H J, Wang H B, Wang Y, Ji J.Macromol. Rapid Commun., 2014, 35:1372.
[35] Karthik S, Puvvada N, Kumar B N P, Rajput S, Pathak A, Mandal M, Singh N D P. ACS Appl. Mater. Interfaces, 2013, 5:5232.
[36] Jiang J Q, Tong X, Zhao Y. J. Am. Chem. Soc., 2005, 127:8290.
[37] Zhao H, Sterner E S, Coughlin E B, Theato P. Macromolecules, 2012, 45:1723.
[38] Dong J M, Zeng Y, Xun Z Q, Han Y B, Chen J P, Li Y Y, Li Y. Langmuir, 2012, 28:1733.
[39] Jin Q, Wang Y, Cai T J, Wang H B, Ji J. Polymer, 2014, 55:4641.
[40] Li L L, Wu P W, Hwang K, Lu Y. J. Am. Chem. Soc., 2013, 135:2411.
[41] Fedoryshin L L, Tavares A J, Petryayeva E, Doughan S, Krull U J. ACS Appl. Mater. Interfaces, 2014, 6:13600.
[42] Sun Y, Feng W, Yang P Y, Huang C H, Li F Y.Chem. Soc. Rev., 2015, 44:1509.
[43] Zhao H, Hou B, Tang Y F, Hu W B, Yin C, Ji Y, Lu X M, Fan Q L, Huang W. Polym. Chem., 2016, 7:3117.
[44] Sierant M, Kazmierski S, Rozanski A, Paluch P, Bienias U, Miksa B J. New J. Chem., 2015, 39:1506.
[45] Lin Q N, Bao C Y, Yang Y L, Liang Q N, Zhang D S, Cheng S Y, Zhu L Y.Adv. Mater., 2013, 25:1981.
[46] Alvarez T M G, Devi L S, Russell M M, Schwartz B J, Zink J I. J. Am. Chem. Soc., 2013, 135:14000.
[47] Zhao L Z, Peng J J, Huang Q, Li C Y, Chen M, Sun Y, Lin Q N, Zhu L Y, Li F Y.Adv. Funct. Mater., 2014, 24:363.
[48] Menon S, Das S. J. Polym. Sci. Pol. Chem., 2011, 49:4448.
[49] Dong J, Zhang R C, Zhan X W, Yang H, Zhu S Q, Wang G J. Colloid Polym. Sci., 2014, 292:2735.
[50] Feng N, Dong J, Han G X, Wang G J. Macromol. Rapid Commun., 2014, 35:721.
[51] Zhang H, Wu H X, Wang J, Yang Y, Wu D M, Zhang Y J, Zhang Y, Zhou Z G, Yang S P. Biomaterials, 2015, 42:66.
[52] Noh M S, Lee S, Kang H, Yang J K, Lee H, Hwang D, Lee J W, Jeong S, Jang Y, Jun B H, Jeong D H, Kim S K, Lee Y S, Cho M H. Biomaterials, 2015, 45:81.
[53] Zhang Y X, Li B, Cao Y J, Qin J B, Peng Z Y, Xiao Z Y, Huang X J, Zou R J, Hu J Q. Dalton Trans., 2015, 44:2771.
[54] Lv R C, Yang P P, He F, Gai S L, Yang G X, Lin J. Chem. Mater., 2015, 27:483.
[55] Li J W, Lyv Z L, Li Y L, Liu H, Wang J K, Zhan W J, Chen H, Chen H B, Li X M. Biomaterials, 2015, 51:12.
[56] Song X J, Gong H, Yin S N, Cheng L, Wang C, Li Z W, Li Y G, Wang X Y, Liu G, Liu Z.Adv. Funct. Mater., 2014, 24:1194.
[57] Liang S, Zhao Y, Xu S P, Wu X, Chen J, Wu M, Zhao J X. ACS Appl. Mater. Interfaces, 2015, 7:85.
[58] Li W P, Liao P Y, Su C H, Yeh C S. J. Am. Chem. Soc., 2014, 136:10062.
[59] Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G, Wang L V, Xia Y N. Nat. Mater., 2009,8:935.
[60] Polyachenko N H L, Merkel E J, Jones B T, Carroll D L, Stewart IV J H. Mol. Pharm., 2009, 6:1092.
[61] Liu Y W, Bai J, Jia X D, Jiang X E, Guo Z. ACS Appl. Mater. Interfaces, 2015, 7:112.
[62] Chen Y W, Chen P J, Hu S H, Chen I W, Chen S Y.Adv. Funct. Mater., 2014, 24:451.
[63] Gu Z J, Yan L, Tian G, Li S J, Chai Z F, Zhao Y L. Adv. Mater., 2013, 25:3758.
[64] Tian Q W, Hu J Q, Zhu Y H, Zou R J, Chen Z G, Yang S P, Li R W, Su Q Q, Han Y, Liu X G. J. Am. Chem. Soc., 2013, 135:8571.
[1] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[2] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[3] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[4] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[5] 梁嘉美, 冯岸超, 袁金颖. 刺激响应星形聚合物的合成及其药物可控释放研究[J]. 化学进展, 2015, 27(5): 522-531.