English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1435-1454 DOI: 10.7536/PC160203 前一篇   

• 综述与评论 •

锂硫电池系统研究与展望

邓南平1, 马晓敏1, 阮艳莉3, 王晓清3, 康卫民1,2*, 程博闻1,2*   

  1. 1. 天津工业大学纺织学院 天津 300387;
    2. 天津工业大学分离膜与膜过程国家重点实验室 天津 300387;
    3. 天津工业大学环境与化学工程学院 天津 300387
  • 收稿日期:2016-02-01 修回日期:2016-03-01 出版日期:2016-09-15 发布日期:2016-05-17
  • 通讯作者: 康卫民, 程博闻 E-mail:kweimin@126.com;bowen15@tjpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51673148,51102178)、国家重点技术支撑项目(No.2015BAE01B03)、中国技术创新基金项目(No.14C26211200298)、天津技术创新基金项目(No.14ZXCXGX00776)和中国教育部长江学者和创新研究团队项目(No.IRT13084)资助

Research and Prospect of Lithium-Sulfur Battery System

Deng Nanping1, Ma Xiaomin1, Ruan Yanli3, Wang Xiaoqing3, Kang Weimin1,2*, Cheng Bowen1,2*   

  1. 1. School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China;
    2. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China;
    3. School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2016-02-01 Revised:2016-03-01 Online:2016-09-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51673148,51102178), the National Key Technology Support Program (No. 2015BAE01B03), the Innovation Fund for Technology of China (No. 14C26211200298), the Innovation Fund for Technology of Tianjin (No. 14ZXCXGX00776), the Chang-jiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT13084).
锂硫电池具有高的理论比容量(1675 mAh·g-1)和能量密度(2600 Wh·kg-1),是一种新型的高性能储能电池。本文全面介绍了锂硫电池最新的基础研究,详细阐述了电池的正极、黏合剂、电解质、隔膜、负极和一些最新的锂硫电池组装与结构设计。硫可以和其他材料以不同方式复合后作为正极来提高电池的导电性以及抑制其电池充放电过程中的“穿梭效应”,以此来改善电池性能;在黏合剂和电解质研究方面,可以选择一些与电极配套和功能性的黏合剂以及不同类型的电解质;同样,在隔膜方面也涉及到隔膜类型的选择、复合与改性处理;在负极方面,对于锂片负极可采用涂覆保护薄膜或膜预锂化处理等方法来改善电池的稳定性和安全性;在一些新颖的电池组合方面,过渡层、新型集流体的运用以及电池结构的新设计也极大提高了电池电化学性能。最后,本文分析了现有锂硫电池存在的缺陷和问题,并对未来可能的发展方向进行了预测。
The lithium-sulfur batteries are rather latest and high-performance storage batteries due to their rather high theoretical specific capacity(1675 mAh ·g-1) and energy density(2600 Wh ·kg-1). This study provides the entire and latest fundamental studies in lithium-sulfur batteries. The cathodes, binders, separators, electrolytes, anodes, some novel cell configurations and structure design of battery are introduced in details. For improving the conductivity of cathode material and suppressing the "shuttle effect", elemental sulfur can be combined with other materials as the cathodes of batteries through various ways. These can enhance the batteries performances. In terms of binders and electrolyte, some appropriate and functional binders and electrolyte are chosen which are compatible with electrode material. At the same time, in terms of separators, researchers mainly pay attention to the type choice or the separators composition and modified treatment. With regard to anodes, several methods have been considered for improving the batteries stability and safety based on metallic lithium such as coating thin dense protective layers or pre-lithiation treatment. Some novel cell configurations such as the application of interlayer, new collectors and new type structures of lithium-sulfur batteries are also vital aspects to greatly improve cell performances. At last, the future research directions associated with lithium-sulfur batteries have also been indicated.

Contents
1 Introduction
2 The principle and characterization of lithium-sulfur batteries
3 Cathode materials of lithium-sulfur batteries
3.1 Sulfur/carbon composites
3.2 Sulfur/conductive polymer composites
3.3 Sulfur/metal and its oxide composites
3.4 Sulfur/multiple sulfur-based compound
4 Binder of lithium-sulfur batteries
5 Electrolytes of lithium-sulfur batteries
5.1 Liquid electrolytes
5.2 Solid state electrolytes
5.3 Gel polymer electrolytes
5.4 Ionic liquid electrolytes
6 Separators of lithium-sulfur batteries
7 Anodes of lithium-sulfur batteries
8 Electrode structure design and modification of lithium-sulfur batteries
8.1 Interlayers and new type of collectors
8.2 New type structures of lithium-sulfur batteries
9 Summary and future directions

中图分类号: 

()
[1] Noorden R. Nature, 2013, 498:416.
[2] Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y, Energy Storage Mater. 2016, 2:107.
[3] Choi Y J, Chung Y D, Baek C Y, Kim K W, Ahn H J, Ahn J H. J. Power Sources, 2008, 184:548.
[4] Dean J A. Lnage's Hnadbook of Chemisty.3rd ed, New York:McGrawHill, 1985. 462.
[5] Gaillard F, Levillain E. J. Electroanal. Chem., 1995, 398:77.
[6] Linden D, Reddy T B. Handbook of Batteries, 4th ed, New York:McGrawHill, 2002. 34.
[7] Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J, Sci. 2016, 351(6271):361.
[8] Dominic B, Stefano P, Bruno S. Chem. Commun., 2013, 49(90):10545.
[9] 董全峰(Dong Q F),王翀(Wang C),郑明森(Zheng M S).化学进展(Progress in Chemistry),2011, 23:533.
[10] Manthiram A, Fu Y Z, Chung S H. Chem. Rev., 2014, 114:11751.
[11] Diao Y, Xie K, Hong X B. Acta Chim. Sinica, 2013, 71:508.
[12] Borchardt L, Oschatz M, Kaskel S. Chem. Eur. J., 2016, 22:7324.
[13] Jozwiuk A, Sommer H, Janek J, Brezesinski T. J. Power Sources, 2015, 296:454.
[14] Li B, Li S M, Liu J H, Wang B, Yang S B. Nano Lett., 2015, 15:3073.
[15] Ding B, Chang Z, Xu G Y, Nie P, Wang J, Pan J, Dou H, Zhang X G. ACS Appl. Mater. Interfaces, 2015, 7:11165.
[16] Li Y C., Mi R, Li S M, Liu X C, Ren W, Liu H, Mei J, Lau W M. Int. J. Hydrogen Energ., 2014, 39:16073.
[17] Zheng G, Zhang Q, Cha J J, Yang Y, Li W, Seh Z W, Cui Y. Nano Lett., 2013, 13(3):1265.
[18] Yuan G H, Wang H D. J. Nat. Gas. Chem., 2014, 23:657.
[19] Zhang Y G, Bakenov Z, Zhao Y, Konarov A, Doan T N L, Malik M, Paron T, Chen P. J. Power Sources, 2012, 208:1.
[20] Zhou W D, Yu Y C., Chen H, DiSalvo F J, Abruna H D. J. Am. Chem. Soc., 2013, 135:16736.
[21] Wei P, Fan M Q, Chen H C, Yang X R, Wu H M, Chen J D, Li T, Zeng L W, Li C M, Ju Q J, Chen D, Tian G L, Lv C. J. Renewable Energy, 2016, 86:148.
[22] 马国强(Ma G Q), 温兆银(Wen Z Y), 王清松(Wang Q S), 靳俊(Jin J), 吴相伟(Wu X W), 张敬超(Zhang J C).无机材料学报(Journal of Inorganic Materials), 2015,30:913.
[23] Zhang Y, Wang L Z, Zhang A Q, Song Y H, Li X F, Feng H,Wu X B, Du P P. Solid State Ionics, 2010, 181:835.
[24] Ding B, Shen L F, Xu G Y, Nie P, Zhang X G. Electrochim. Acta, 2013, 107:78.
[25] Xie K Y, Han Y Z, Wei W F, Yu H R, Zhang C B, Wang J G, Lu Wei, Wei B Q. RSC Adv., 2015, 5:1.
[26] Cao F, Pan G X, Chen J, Zhang Y J, Xia X H. J. Power Sources, 2016,303:35.
[27] Kim C S, Guerfi A, Hovington P, Trottier J, Gagnon C, Barray F, Vijh A, Armand M, Zaghib K. Electrochem. Commun., 2013, 32:35.
[28] Zhang Y, Wu X B, Feng H, Wang L Z, Zhang A Q, Xia T C, Dong H C. Int. J. Hydrogen Energ., 2009, 34:1556.
[29] Song M S, Han S C, Kim H S, Kim J H, Kim K T, Kang Y M, Ahn H J, Dou S X, Lee J Y. J. Electrochem. Soc., 2004, 151:791.
[30] Zhang Y G, Zhao Y, Doan T N L, Konarov A, Gosselink D. Solid State Ionics, 2013, 238:30.
[31] Zhao X H, Kim J K, Ahn H J, Cho K K, Ahn J H. Electrochim. Acta, 2013, 109:145.
[32] Zhang Z A, Li Q, Zhang K, Chen W, Lai Y Q, Li J. J. Power Sources, 2015, 290:159.
[33] Rezan D C. J. Power Sources, 2015, 282:437.
[34] Lee K T, Black R, Yim T, Ji X L, Nazar L F. Adv. Energy Mater., 2012, 2:1490.
[35] Zhang Y G, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P. J. Mater. Chem. A, 2013, 1:295.
[36] Cai K P, Song M K, Cairns E J, Zhang Y G. Nano Lett., 2012, 12:6474.
[37] Fu Y Z, Su Y S, Manthiram A. Adv. Energy Mater., 2014, 4:1300655.
[38] Zhou G M, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[39] 卢松涛(Lu Y C). 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2014.
[40] Manthiram A, Fu Y, Su Y. Acc. Chem. Res., 2013, 45:1125.
[41] Liu S, Li Y, Hong X, Xu J, Zheng C, Xie K. Electrochim. Acta, 2015, 188:516.
[42] Chen L, Shaw L L. J. Power Sources, 2014, 267:770.
[43] Lin Z, Liang C. J. Mater. Chem. A, 2015, 3:936.
[44] Lacey M J, Fabian J, Kristina E, Daniel B. Chem. Commun., 2013, 49(76):8531.
[45] Wang H Q, Sencadas V, Gao G P, Gao H, Du A J, Liu H K, Guo Z P. Nano Energy, 2016, 26:722.
[46] Hong X H, Jin J, Wen Z Y, Zhang S P, Wang Q S, Shen C, Rui K. J. Power Sources, 2016, 324:455.
[47] Song M K, Zhang Y, Cairns E J. Nano Lett., 2013, 13:5891.
[48] Notake K, Gunji T, Kokubun H, Kokubun H, Kosemura S, Mochizuki Y, Tanabe T, Kaneko S, Ugawa S, Lee H. J. Appl. Electrochem., 2016,46(3):267.
[49] Lacey M J, Jeschull F, Edstr m K, Brandell D. J. Power Sources, 2014, 264:8.
[50] Li G R, Cai W L, Liu B H, Li Z P. J. Power Sources, 2015, 294:187.
[51] Zhi W S, Zhang Q, Li W, Zheng G, Yao H, Cui Y. Chem. Sci., 2013, 4(9):3673.
[52] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochim. Acta, 2008, 53:7084.
[53] Wang Y, Huang Y Q, Wang W K, Huang C J, Yu Z B, Zhang H, Sun J, Wang A, Yuan K. Electrochim. Acta, 2009, 54:4062.
[54] Bao W Z, Zhang Z A, Gan Y Q, Wang X A, Lia J. J. Energ. Chem., 2013, 22:790.
[55] Wang J L, Yao Z D, Monroe C W, Yang J, Nuli Y. Adv. Funct. Mater., 2013, 23:1194.
[56] Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Adv. Mater., 2011, 23:5641.
[57] D rfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann M J. Chem. Commun., 2012, 48:4097.
[58] Lu H, Zhang K, Yuan Y, Qin F, Zhang Z A, Lai Y Q, Liu Y X. Electrochim. Acta, 2015, 161:55.
[59] Azimi N, Weng W, Takoudis C, Zhang Z C. Electrochem. Commun., 2013, 37:96.
[60] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahn H J, Kim K W. Electrochim. Acta, 2007, 52:2075.
[61] Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J. J. Electrochem. Soc., 2009, 156(8):40.
[62] Xiong S Z, Diao Y, Hong X B, Chen Y C, Xie K. J. Electroanal. Chem., 2014, 719:122.
[63] Xiong S Z, Xie K, Blomberg E, Jacobsson P, Matic A. J. Power Sources, 2014, 252:150.
[64] Xiong S Z, Xie K, Diao Y, Hong X B. J. Power Sources, 2013, 236:181.
[65] Tatsumisago M, Nagao M, Hayashi A. J. Am. Ceram. Soc., 2013, 1:17.
[66] Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S. Phys. Chem. Chem. Phys., 2013, 15:18600.
[67] Nagao M, Hayashi A, Tatsumisago M. Energy Technol., 2013, 1:186.
[68] Shin J H, Kim K W, Ahn H J, Ahn J H. Mater. Sci. Eng. B, 2002, 95:148.
[69] Hassoun J, Scrosati B. Adv. Mater., 2010, 22:5198.
[70] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10:682.
[71] Zhang S S, Tran D T. Electrochim. Acta, 2013, 114:296.
[72] Lim D H, Manuel J, Ahn J H, Kim J K, Jacobsson P, Matic A, Ha J K, Cho K K, Kim K W. Solid State Ionics, 2012, 225:631.
[73] Raghavan P, Manuel J, Zhao X H, Kim D S, Ahn J H. J. Power Sources, 2011, 196:6742.
[74] Wang S H, Hou S S, Kuo P L, Teng H. ACS Appl. Mater. Interfaces, 2013, 5:8477.
[75] Park J W, Yamauchi K, Takashima E, Tachikawa N, Ueno K, Dokko K, Watanabe M. J Phys. Chem. C, 117, 2013:4431.
[76] Ueno K, Park J W, Yamazaki A, Mandai T, Tachikawa N, Dokko K, Watanabe M. J. Phys. Chem. C, 2013, 117:20509.
[77] Unemoto A, Ogawa H, Gambe Y, Honma I, Electrochim. Acta, 2014, 125:386.
[78] Zhang Z Y, Lai Y Q, Zhang Z A, Zhang K, Li J. Electrochim. Acta, 2014, 129:55.
[79] Zhang Z Y, Lai Y Q, Zhang Z A, Li J. Solid State Ionics, 2015, 278:166.
[80] Gu M S, Lee J, Kim Y, Kim J S, Jang B Y, Lee K T, Kim B S. RSC Adv., 2014, 4:46940.
[81] Jin Z Q, Xie K, Hong X B, Hu Z Q, Liu X. J. Power Sources, 2012, 218:163.
[82] Wei H, Ma J, Li B. ACS Appl. Mater.Interfaces, 2014, 6:20276.
[83] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Energy Environ. Sci., 2013, 7:347.
[84] Zhao Y, Zhang Y G, Bakenov Z, Chen P. Solid State Ionics, 2013, 234:40.
[85] Zhang Y G, Zhao Y, Bakenov Z. Nano Res. Lett., 2014, 9:137.
[86] Zhang Y G, Zhao Y, Bakenov Z, Chen D G P. J. Solid State Electrochem., 2014, 18:1111.
[87] Jin Z Q, Xie K, Hong X B. RSC Adv., 2013, 3:8889.
[88] Song X Y, Ding W Q, Cheng B W, Xing J F. Polym. Composites. 2015. Version of Record online:29 MAY 2015, DOI:10.1002/pc.23621.
[89] Kang W M, Ma X M, Zhao Y X, Zhao H H, Cheng B W, Liu Y B. Acta. Polym. Sin., 2015,11:1258.
[90] Shi S J, Zhuang X P, Cheng B W, Wang X Q. J. Mater. Chem., 2013, 1:13779.
[91] Zhang B, Zhuang X P, Cheng B W, Wang N, Ni Y. Mater. Lett., 2014, 115:248.
[92] Wang H Y,Wu D Y. Nanoscale, 2011, 3:3601.
[93] Tang D H, Wu D Y. Chem. Eur. J., 2009, 15:10352
[94] Zhuang X P, Jia K F, Cheng B W, Guan K T, Kang W M, Ren Y L. J. Eng. Fibre Fabr., 2013, 8(1):88.
[95] Wang H, Zhuang X P, Cheng B W,Tong J, Li X, Wang W. J. Appl. Polym. Sci., 2015, 132(47):168.
[96] Zhang Y J, Liu X Y, Bai W Q, Tang H, Shi S J, Wang X L, Gu C D, Tu J P. J. Power Sources, 2014, 266:43.
[97] Kim J S, Kim D W, Jung H T, Choi J W. J. Am. Chem. Soc., 2015, 27:2780.
[98] Wu F, Qian J, Chen R J, Lu J, Li L,Wu H M, Chen J Z, Zhao T, Ye Y S, Amine K. ACS Appl. Mater. Interfaces, 2014, 6:15542.
[99] Brückner J, Thieme S, B ttger-Hiller F, Bauer I, Grossmann H T, Strubel P, Althues H, Spange S, Kaskel S. Adv. Funct. Mater., 2014, 24:1284.
[100] Yan Y, Yin Y X, Xin S, Jing S, Guo Y G, Wan L J. Electrochim. Acta, 2013, 91:58.
[101] Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. Nano Lett., 2010, 10:1486.
[102] Ryu H S, Ahn H J, Kim K W, Ahn J H, Cho K K, Nam T H. Electrochim. Acta, 2006, 52(4):1563.
[103] Huang J Q, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9(3):3002.
[104] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151:A1969.
[105] Su Y S, Manthiram A. Chem. Commun., 2012, 48:8817.
[106] Xing L B, Xi K, Li Q Y, Su Z, Lai C, Zhao X S, Kumar R V. J. Power Sources, 2016, 303:22.
[107] Chung S H, Manthiram A, Chem. Commun., 2014, 50:4184.
[108] Wang X F, Wang Z X, Chen L Q. J. Power Sources, 2013, 242:65.
[109] Chai L Y, Wang J X, Wang H Y, Zhang L Y, Yu W T, Mai L Q. Nano Energy, 2015, 17:224.
[110] Kim H, Lee J T, Yushin G. J. Power Sources, 2013, 226:256.
[111] Chung S H, Manthiram A. Electrochem.Commun., 2014, 38:91.
[112] Wang L, He X M, Li J J. J. Power Sources, 2013, 239:623.
[113] Cao Y L, Li X L, Aksay I A, Lemmon J, Nie Z M, Yang Z G, Liu J. Phys. Chem. Chem. Phys., 2011, 13:7660.
[114] Zhou G M, Pei S F, Li L,Wang D W, Wang S G, Huang K, Yin L C, Li F, Cheng H M. Adv. Mater., 2014, 26:625.
[115] Fu Y Z, Su Y S, Manthiram A. Adv. Energy Mater., 2013, 4:82.
[116] Zheng D, Zhang X R, Wang J K, Qu D Y, Yang X Q, Qu D Y, J. Power Sources, 2016, 301:312.
[117] 万文博(Wan W B), 蒲薇华(Pu W H), 艾德生(Ai D S). 化学进展(Progress in Chemistry), 2013, 25(11):1830.
[118] 赖超(Lai C), 李国春(Li G C), 叶世海(Ye S H),高学平(Gao X P). 化学进展(Progress in Chemistry), 2011,23:527.
[119] 周兰(Zhou L), 余爱水(Yu A S). 电化学(Journal of Electrochemistry), 2015, 21(3):211.
[120] 辛培明(Xi P M), 金波(Jin B), 侯甲子(Hou J Z), 严庆光(Yan Q G), 钟晓斌(Zhong X B), 王环环(Wang H H), 高凡(Gao F). 储能科学与技术(Energy Science & Engineering), 2015, 4(4):374.
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[6] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[7] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[8] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[9] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[10] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[11] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[12] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[13] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[14] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[15] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
阅读次数
全文


摘要

锂硫电池系统研究与展望