English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 885-895 DOI: 10.7536/PC160109 前一篇   后一篇

• 综述与评论 •

天然高分子复合羟基磷灰石材料的制备与应用

王荣民*, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵   

  1. 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 兰州 730070
  • 收稿日期:2016-01-01 修回日期:2016-03-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 王荣民 E-mail:wangrm@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21263024, 21364012)资助

Preparation and Application of Natural Polymer/Hydroxyapatite Composite

Wang Rongmin*, Sun Kangqi, Wang Jianfeng, He Yufeng, Song Pengfei, Xiong Yubing   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2016-01-01 Revised:2016-03-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21263024, 21364012).
羟基磷灰石(HA)是人类与动物骨骼中主要无机物组成成分,因其具有良好的生物相容性、生物活性和骨传导作用,作为新型合成生物材料已应用于骨组织的修复与替代技术。本文在介绍HA主要制备方法(如:沉淀法、乳液法、水热反应法、溶胶-凝胶法、机械化学法、固态合成法、水解法、超声化学法、热解法、模板法和电沉积法等)和应用的基础上,重点综述了各类天然高分子与HA复合材料的制备及应用研究进展。天然高分子,如:纤维素、淀粉、甲壳素、壳聚糖、蛋白(包括胶原蛋白、明胶、角蛋白、丝蛋白和植物蛋白)等,与HA复合后制备的天然高分子复合羟基磷灰石材料,在保持其生物相容性的同时,又能改善复合材料的机械性能与生物活性,使其可用于医用材料、载体材料和吸附分离材料。最后,本文指出为了满足生物体内的特殊环境(如强的韧性、与骨生长速度匹配性能等)及不同领域的要求,天然高分子复合HA材料需要发展的方向。
Hydroxyapatite (HA) is a kind of main minerals in vertebrate bones including human and animals. The synthesized HA possess good biocompatibility, bioactivity and bone conductivity. Acting as novel biological material, HA has been successfully used for repairing and replacing bone tissue. In this review, based on introducing preparation and applications of hydroxyapatite and its composite, the progress of HA composite materials with various natural polymers has been summarized. The main synthesis methods of HA are precipitation, emulsion, hydrothermal method, sol-gel method, mechanical chemical method, hydrolysis, pyrolysis, sonochemistry, template method, and electrodeposition method. Here, the natural polymer includes polysaccharide and protein, which polysaccharide includes cellulose, starch, chitin, chitosan and heparin, and protein includes collagen, gelatin, keratin, fibroin and plant protein. After being combined with hydroxyapatite, their mechanical properties and bioactive properties of the natural polymer composite material are improved with keeping their biocompatibility. Therefore, the natural polymer/HA composite materials have been applied as biological medicine, carriers, absorption and separation. The development trend is also suggested in the end of paper. In order to match special environment of biological body, such as strong resilience or bone growth speed matching performance, the new kind of natural polymer/HA composite materials will be investigated.

Contents
1 HA and its composites
2 Preparation and applications of HA and its composite
2.1 The main synthesis methods of HA
2.2 The applications of HA composite
3 Polysaccharide HA composites
3.1 Cellulose/HA and starch/HA composites
3.2 Chitin/HA and chitosan/HA composites
3.3 Heparin/HA composites
4 Protein/HA composites
4.1 Collagen/HA composites
4.2 Gelatin/HA composites
4.3 Keratin/HA composites
4.4 Fibroin/HA composites
4.5 Plant protein/HA composites
5 Conclusion and outlook

中图分类号: 

()
[1] Jarcho M, Bolen C H, Thomas M B, Bobick J, Kay J F, Doremus R H. J. Mater. Sci., 1976, 11(11): 2027.
[2] Eichert D, Drouet C, Sfihi H, Rey C, Combes C. Biomaterials Research Advances (Eds. by Kendall J B), Nova Science Publishers, 2007. 93.
[3] Zhou H J, Lee J. Acta. Biomater., 2011, 7(7): 2769.
[4] Breithaupt A, Fitzgerald R. Facial. Plast. Surg. Clin. North. Am., 2015, 23(4): 459.
[5] 沈娟(Shen J), 金波(Jin B), 蒋琪英(Jiang Q Y), 胡亚敏(Hu Y M), 钟国清(Zhong G Q), 霍冀川(Huo J C). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(8): 1749.
[6] Ito H, Oaki Y, Imai H. Cryst. Growth. Des., 2008, 8(3): 1055.
[7] Huang Y T, Imura M, Nemoto Y, Cheng C H, Yamauchi Y. Sci. Technol. Adv. Mater., 2011, 12: 1.
[8] Wang P P, Li C H, Gong H Y, Jiang X R, Wang H Q, Li K X. Powder. Technol., 2010, 203(2): 315.
[9] Zhang G D, Chen J D, Yang S, Yu Q F, Wang Z L, Zhang Q Q. Mater. Lett., 2011, 65(3): 572.
[10] Zhang H Q, Darvell B W. Acta Biomater., 2011, 7(7): 2960.
[11] Zhu A P, Lu Y, Si Y F, Dai S. Appl. Surf. Sci., 2011, 257(8): 3174.
[12] Teraoka K, Ito A, Onuma K, Tateishi T, Tsutsumi S. J. Mater. Res., 1999, 14(6): 2655.
[13] Kumar A R, Kalainathan S. Physica. B, 2010, 405(13): 2799.
[14] Montazeri N, Jahandideh R, Biazar E. Int. J. Nanomedicine, 2011, 6: 197.
[15] Padmanabhan S K, Balakrishnan A, Chu M C, Lee Y J, Kim T N, Cho S J. Particuology, 2009, 7(6): 466.
[16] Saha S K, Banerjee A, Banerjee S, Bose S. Mater. Sci. Eng. C, 2009, 29(7): 2294.
[17] Zhou W Y, Wang M, Cheung W L, Guo B C, Jia D M. J. Mater. Sci. Mater. Med., 2008, 19(1): 103.
[18] Sadat-Shojai M. J. Iran. Chem. Soc., 2009, 6(2): 386.
[19] Lin K L, Chang J, Cheng R M, Ruan M L. Mater. Lett., 2007, 61(8/9): 1683.
[20] Sun Y X, Guo G S, Tao D L, Wang Z H. J. Phys. Chem. Solids, 2007, 68(3): 373.
[21] Fahami A, Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B. Solid State Sci., 2011, 13(1): 135.
[22] Mochales C, Wilson R M, Dowker S E P, Ginebra M P. J. Alloys. Compd., 2011, 509(27): 7389.
[23] Honarmandi P, Honarmandi P, Shokuhfar A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R. Adv. Appl. Ceram., 2010, 109(2): 117.
[24] Teshima K, Lee S H, Sakurai M, Kameno Y, Yubuta K, Suzuki T, Shishido T, Endo M, Oishi S. Cryst. Growth. Des., 2009, 9(6): 2937.
[25] Tseng Y H, Kuo C S, Li Y Y, Huang C P. Mater. Sci. Eng. C, 2009, 29(3): 819.
[26] Sturgeon J L, Brown P W. J. Mater. Sci. Mater. Med., 2009, 20(9): 1787.
[27] Seo D S, Lee J K. J. Cryst. Growth., 2008, 310(7/9): 2162.
[28] Giardina M A, Fanovich M A. Ceram. Int., 2010, 36(6): 1961.
[29] Rouhani P, Taghavinia N, Rouhani S. Ultrason. Sonochem., 2010, 17(5): 853.
[30] Zhang J, Zhan X H, Wen X M, Song B C, Ma L, Peng W T. Inorg. Mater., 2009, 45(12): 1362.
[31] Ghosh S K, Roy S K, Kundu B, Datta S, Basu D. Mater. Sci. Eng. B, 2011, 176(1): 14.
[32] Aghayan M A, Rodríguez M A. Mater. Sci. Eng. C, 2012, 32(8): 2464.
[33] Cho J S, Ko Y N, Koo H Y, Kang Y C. J. Mater. Sci. Mater. Med., 2010, 21(4): 1143.
[34] Sun R X, Chen K Z, Lu Y P. Mater. Res. Bull., 2009, 44(10): 1939.
[35] Corami A, D' Acapito F, Mignardi S, Ferrini V. Mater. Sci. Eng. B, 2008, 149(2): 209.
[36] Lin D Y, Wang X X. Colloid. Surface B, 2011, 82(2): 637.
[37] Kolmas J, Groszyk E, Kwiatkowska-Róycka D. BioMed. Res. Int., 2014, 2014: 178123.DOI: 10.1155/2014/178123.
[38] Fox K, Tran P A, Tran N. ChemPhysChem, 2012, 13(10): 2495.
[39] 倪淞波(Ni S B), 李延报(Li Y B), 王秀梅(Wang X M). 化学进展(Progress in Chemistry), 2011, 23(1): 231.
[40] Lahiri D, Ghosh S, Agarwal A. Mater. Sci. Eng. C, 2012, 32(7): 1727.
[41] Zakaria S M, Sharif Zein S H, Othman M R, Yang F, Jansen J A. Tissue Engin. B: Rev., 2013, 19(5): 431.
[42] Venkatesan J, Kim S K. J. Biomed. Nanotechnol., 2014, 10(10): 3124.
[43] Roul J, Mohapatra R, Sahoo S K. Asian J. Biomed. Pharmaceut. Sci., 2013, 3(24): 33.
[44] 王云(Wang Y), 王青山(Wang Q S). 中国组织工程研究与临床康复(Journal of Clinical Rehabilitative Tissue Engineering Research), 2010, 14(8): 1426.
[45] Pavicic T. J. Drugs Dermatol., 2013, 12(9): 996.
[46] Zhang J Z, Nie J Y, Zhang Q R, Li Y L, Wang Z K, Hu Q L. J. Biomat. Sci., Polym. Ed., 2014, 25(1): 61.
[47] Thein-Han W W, Misra R D K. Acta Biomat., 2009, 5(4): 1182.
[48] Zhang L, Li Y B, Yang A P, Peng X L, Wang X J, Zhang X. J. Mater. Sci.: Mater. Med., 2005, 16(3): 213.
[49] Lu Y, Zhu A P, Wang W P, Shi H. Appl. Surf. Sci., 2010, 256(23): 7228.
[50] Peng C, Zhu Z A, Li G L, Sun D C, Li J G, Qiu Z Y, Hu C L, Liu Z H, Sheng H B, Cui F Z. J. Biomat. Tissue Engin., 2013, 3(5): 534.
[51] Jia L P, Duan Z G, Fan D D, Mi Y, Hui J, Chang L. Mater. Sci. Eng. C, 2013, 33(2): 727.
[52] Rodrigues S C, Salgado C L, Sahu A, Garcia M P, Fernandes M H, Monteiro F J. J. Biomed. Mater. Res. A, 2013, 101(4): 1080.
[53] Zhang C Y, Lu H, Zhuang Z, Wang X P, Fang Q F. J. Mater. Sci.: Mater. Med., 2010, 21(12): 3077.
[54] Qian J M, Xu M H, Suo A L, Yang T F, Yong X Q. Mater. Lett., 2013, 93: 72.
[55] Catledge S A, Clem W C, Shrikishen N, Chowdhury S, Stanishevsky A V, Koopman M, Vohra Y K. Biomed. Mater., 2007, 2(2): 142.
[56] Ye F, Guo H, Zhang H, He X. Acta Biomater., 2010, 6(6): 2212.
[57] Cai Y R, Pan H H, Xu X R, Hu Q H, Li L, Tang R K. Chem. Mater., 2007, 19(13): 3081.
[58] Park J S, Hong S J, Kim H Y, Yu H S, Lee Y I, Kim C H, Kwak S J, Jang J H, Hyun J K, Kim H W. Tissue. Eng. Part A, 2010, 16(5): 1681.
[59] Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ucon A. J. Control. Release, 2006, 110(2): 260.
[60] Ribeiro C C, Barrias C C, Barbosa M A. Biomaterials, 2004, 25(18): 4363.
[61] Boonsongrit Y, Abe H, Sato K, Naito M, Yoshimura M, Ichikawa H, Fukumori Y. Mater. Sci. Eng. B, 2008, 148(1/3): 162.
[62] Sivakumar M, Rao K P. J. Biomed. Mater. Res. Part A, 2003, 65A(2): 222.
[63] Sivakumar M, Rao K P. Biomaterials, 2002, 23(15): 3175.
[64] Ferraz M P, Mateus A Y, Sousa J C, Monteiro F J. J. Biomed. Mater. Res. Part A, 2007, 81(4): 994.
[65] Tomoda K, Ariizumi H, Nakaji T, Makino K. Colloid Surface B, 2010, 76(1): 226.
[66] Zhang N, Gao T L, Wang Y, Wang Z L, Zhang P B, Liu J G. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 46: 158.
[67] Qi C, Zhu Y J, Lu B Q, Zhao X Y, Zhao J, Chen F. J. Mat. Chem., 2012, 22(42): 22642.
[68] Emoto M, Naganuma Y, Choijamts B, Ohno T, Yoshihisa H, Kanomata N, Kawarabayashi T, Aizawa M. Cancer Sci., 2010, 101(4): 984.
[69] Mamani L, Heydari A, Shiroodi R K. Curr. Org. Chem., 2009, 13(7): 758.
[70] 董黎静(Dong L J), 朱志良(Zhu Z L), 仇雁翎(Qiu Y L), 赵建夫(Zhao J F). 化学通报(Chemistry), 2013, 5(76): 405.
[71] Cummings L J, Snyder M A, Brisack K. Enzymol., 2009, 463: 387.
[72] Eftekhari S, Sawi I E, Bagheri Z S, Turcotte G, Bougherara H. Mater. Sci. Eng. C, 2014, 39: 120.
[73] Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R. J. Biomed. Mater. Res. A, 2014, 102(5): 1568.
[74] Wan Y Z, Huang Y, Yuan C D, Raman S, Zhu Y, Jiang H J, He F, Gao C. Mater. Sci. Eng. C, 2007, 27(4): 855.
[75] Qu P, Zhang X L, Zhou Y T, Yao S Y, Zhang L P. Sci. Adv. Mater., 2012, 4(2): 187.
[76] Saber-Samandari S, Saber-Samandari S, Gazi M. React. Funct. Polym., 2013, 73(11): 1523.
[77] Kim I S, Kumta P N. Mater. Sci. Eng. B, 2004, 111(2/3): 232.
[78] Cervera M F, Heinämäki J, Krogars K, Jörgensen A C, Karjalainen M, Colarte A I, Yliruusi J. AAPS. Pharm. Sci. Tech., 2004, 5(1): 109.
[79] Ai J, Rezaei-Tavirani M, Biazar E, Heidari K S, Jahandideh R. J. Nanomater., 2011, 2011: 391596. DOI.org/10.1155/2011/391596.
[80] Meskinfam M, Sadjadi M A S, Jazdarreh H, Zare K. J. Biomed. Nanotechnol., 2011, 7(3): 455.
[81] Fadeeva I V, Ferro D, Fomin A S, Polupudnova E G, Barinov S M. Powder Metallurgy Prog., 2015, 15(1): 50.
[82] Madhumathi K, Binulal N S, Nagahama H, Tamura H, Shalumon K T, Selvamurugan N, Nair S V, Jayakumar R. Int. J. Biol. Macromol., 2009, 44(1): 1.
[83] Kumar P T S, Srinivasan S, Lakshmanan V K, Tamura H, Nair S V, Jayakumar R. Carbohyd. Polym., 2011, 85(3): 584.
[84] Kikuchi M. Biol. Pharm. Bull., 2013, 36(11): 1666.
[85] Ding C C, Teng S H, Pan H. Mater. Lett., 2012, 79: 72.
[86] Yu Y, Zhang H, Sun H, Xing D, Yao F. Front. Chem. Sci. Eng., 2013, 7(4): 388.
[87] Nikpour M R, Rabiee S M, Jahanshahi M. Compos. Part. B-Eng., 2012, 43(4):1881.
[88] Madhumathi K, Shalumon K T, Rani V V D, Tamura H, Furuike T, Selvamurugan N, Nair S V, Jayakumar R. Int. J. Biol. Macromol., 2009, 45(1): 12.
[89] Liverani L, Abbruzzese F, Mozetic P, Basoli F, Rainer A, Trombetta M. Asia-Pac. J. Chem. Eng., 2014, 9(3): 407.
[90] Li Y, Liu T T, Zheng J, Xu X Y. J. Appl. Polym. Sci., 2013, 130(3): 1539.
[91] Reverchon E, Adami R. Powder. Technol., 2013, 246: 441.
[92] Augustine R, Kalappura U G, Mathew K T. Microw. Opt. Techn. Lett., 2008, 50(11): 2931.
[93] Isikli C, Hasirci V, Hasirci N. J. Tissue Eng. Regen. M, 2012, 6(2): 135.
[94] Bhat K A, Padmavathi R, Sangeetha D. J. Biomater. Tissue Eng., 2012, 2(3): 244.
[95] Chen J D, Yu Q F, Zhang G D, Yang S, Wu J L, Zhang Q Q. Colloid. Surface B, 2012, 93: 100.
[96] Shi P J, Zuo Y, Li X W, Zuo Q, Liu H H, Zhang L, Li Y B, Morsi Y S. J. Biomed. Mater. Res. Part A, 2010, 93A(3): 1020.
[97] Tanir T E, Hasirci V, Hasirci N. Polym. Bull., 2014, 71(11): 2999.
[98] Bozzini B, Barca A, Bogani F, Boniardi M, Carlino P, Mele C, Verri T, Romano A. J. Mater. Sci-Mater. Med., 2014, 25(6): 1425.
[99] Sun F, Pang X, Zhitomirsky I. J. Mater. Proc. Technol., 2009, 209(3): 1597.
[100] Ma R, Sask K N, Shi C, Brash J L, Zhitomirsky I. Mater. Lett., 2011, 65(4): 681.
[101] 王荣民(Wang R M),朱永峰(Zhu Y F),何玉凤(He Y F),李岩(Li Y),毛崇武(Mao C W),何乃普(He N P). 化学进展(Progress in Chemistry), 2010, 22(10): 1952.
[102] Yin X C, Li F Y, He Y F, Wang Y, Wang R M. Biomater. Sci., 2013, 1(5), 528.
[103] 何乃普(He N P),王荣民(Wang R M). 化学进展(Progress in Chemistry),2012, 24(1): 94.
[104] He N P, Wang R M, He Y F, Dang X M. Sci. China Chem., 2012, 55(9): 1788.
[105] Xiong Y B, Wang H, Wu C Y, Wang R M. Polym. Adv. Technol., 2012, 23(11): 1429.
[106] 何乃普(He N P), 逯盛芳(Lu S F), 赵伟刚(Zhao W G), 杜曦(Du X), 黄思凯(Huang S K), 王荣民(Wang R M). 化学进展(Progress in Chemistry), 2014, 26(2/3): 303.
[107] Li T, Yin X C, Zhai W Z, He Y F, Wang R M. Austr. J. Chem., 2016, 69(2): 191.
[108] Hoffman A S, Stayton P S. Prog. Polym. Sci., 2010, 32: 922.
[109] Guo J H, Pan S J, Yin X C, He Y F, Li T, Wang R M. J. Appl. Polym. Sci., 2015, 132(9): 1.
[110] Tsiourvas D, Sapalidis A, Papadopoulos T. Mater. Today Comm., 2016, 7: 59.
[111] Wang L L, Yang J F, Sun K N, Liu A H, Qiu L P, Li A M. J. Sci. Conf. Proce. Am. Sci. Pub., 2009, 1(2/3): 315.
[112] Rogel M R, Qiu H, Ameer G A. J. Mater. Chem., 2008, 18: 4233.
[113] Kim H M, Chae W P, Chang K W, Chun S, Kim S, Jeong Y, Kang I K. J. Biomed. Mater. Res. B, 2010, 94B(2): 380.
[114] Wang Z L, Yan Y H, Wan T, Yang H. Proc. Inst. Mech. Eng.,Part H, 2013, 227(10): 1094.
[115] Sionkowska A, Koz?owska J. Int. J. Biol. Macromol. 2013, 52: 250.
[116] Ribeiro N, Sousa S R, van Blitterswijk C A, Moroni L, Monteiro F J. Biofabrication, 2014, 6(3): 035015. DOI: 10.1088/1758-5082/6/3/035015.
[117] Akkouch A, Zhang Z, Rouabhia M. J. Biomed. Mater. Res. A, 2011, 96A(4) :693.
[118] Dubruel P, Unger R, Van Vlierberghe S, Cnudde V, Jacobs P, Schacht E. Biomacromulecules, 2007, 8: 338.
[119] Tampieri A, Celotti G, Landi E, Montevecchi M, Roveri N, Bigi A. J. Mater. Sci. Mat. Med., 2003, 14: 623.
[120] Liu B, Lin P, ShenY, Dong Y. J. Mater. Sci. Mater. Med., 2008, 19(3): 1203.
[121] Gentile P, Chiono V, Boccafoschi F, Baino F, Vitale-Brovarone C, Verne E, Barbani N, Ciardelli G. J. Biomat. Sci-Polym. E, 2010, 21(8/9): 1207.
[122] Landi E, Valentini F, Tampieri A. Acta Biomater., 2008, 4(6): 1620.
[123] Zuo G F, Liu C, Luo H L, He F, Liang H, Wang J H, Wan Y Z. J. Appl. Polym. Sci., 2009, 113(5): 3089.
[124] Raz M, Moztarzadeh F, Shokrgozar M A, Azami M, Tahriri M. Int. J. Mater. Res., 2014, 105(5): 493.
[125] Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N. J. Biomed. Mater. Res. A, 2014, 102(5): 1415.
[126] Vidyarthi U, Zhdan P, Gravanis C, Lekakou C. World Congress on Engineering. 2007: 1251.
[127] Liao S, Ngiam M, Chan C K, Ramakrishna S. Biomed. Mater., 2009, 4(2): 025019. DOI: 10.1088/ 1748-6041/4/2/025019.
[128] Nakata R, Tachibana A, Tanabe T. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 41: 59.
[129] Li J S, Liu X, Zhang J, Zhang Y, Han Y X, Hu J Y, Li Y. J. Biomed. Mater. Res. Part. B: Appl. Biomater., 2012, 100B(4): 896.
[130] Li J, Li Y, Liu X, Zhang J, Zhang Y. J. Mater. Chem. B, 2013, 1: 432.
[131] Belcarz A, Ginalska G, Zalewska J, Rzeski W, ?lósarczyk A, Kowalczuk D, Nied D?wiadek J. J.Biomed. Mater. Res. Part. B: Appl. Biomate., 2009, 89B(1): 102.
[132] Fujii T, Tanaka T, Ohkawa K. J. Biomed. Mater. Res. Part. B Appl. Biomater., 2009, 91(2): 528.
[133] Zhao X, Lui Y S, Choo C K C, Sow W T, Huang C L, Ng K W, Tan L P, Loo J S C. Mater. Sci. Eng. C, 2015, 49: 746.
[134] Dias G J, Mahoney P, Swain M, Kelly R J, Smith R A, Ali M A. J. Biomed. Mater. Res. A, 2010, 95(4): 1084.
[135] Du C, Jin J, Li Y, Kong X, Wei K, Yao J. Mater. Sci. Eng.: C, 2009, 29(1): 62.
[136] Wang G, Yang H, Li M, Lu S, Chen X, Cai X. J. Bone Joint Surg., 2010, 92(2): 320.
[137] Kim H S, Kim J T, Jung Y J, Ryu S C, Son H J, Kim Y G. Macromol. Res., 2007, 15(1): 65.
[138] Ming J, Zuo B. Mater. Chem. Phys., 2012, 137(1): 421.
[139] Miroiu F M, Socol G, Visan A, Stefan N, Craciun D, Craciun V, Andronie A. Mater. Sci. Eng.: B, 2010, 169(1): 151.
[140] Wang L, Li C. Carbohydrate Polym., 2007, 68(4): 740.
[141] Liu L, Liu J, Wang M, Min S, Cai Y, Zhu L, Yao J. J. Biomater. Sci., Polym. Ed., 2008, 19(3): 325.
[142] Wei K, Li Y, Kim K O, Nakagawa Y, Kim B S, Abe K, Kim I S. J. Biomed. Mater. Res. A, 2011, 97(3): 272.
[143] Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K. J. Biomed. Mater. Res. B: Appl. Biomater., 2009, 90(2): 641.
[144] Pascu E I, Stokes J, McGuinness G B. Mater. Sci. Eng.: C, 2013, 33(8): 4905.
[145] Jiang J, Hao,W, Li Y, Yao J, Shao Z, Li H, Chen S. Biotechn. Lett., 2013, 35(4): 657.
[146] Lima P A L, Resende C X, de Almeida Soares G D, Anselme K, Almeida L E. Mater. Sci. Eng.: C, 2013, 33(6): 3389.
[147] Jin Y, Kundu B, Cai Y, Kundu S C, Yao J. Coll. Surf. B: Biointerf., 2015, 134: 339.
[148] Huang J, Wong C, George A,. Kaplan D L. Biomaterials, 2007, 28(14): 2358.
[149] Cao B, Mao C. Langmuir, 2007, 23(21): 10701.
[150] Yang L, Hedhammar M, Blom T, Leifer K, Johansson J, Habibovic P, van Blitterswijk C A. Biomed. Mater., 2010, 5(4): 045002. DOI: 10.1088/ 1748-6041/5/4/045002.
[151] Li Y, Yao C. Polym. Compos., 2012, 33(6): 961.
[152] Zhang M, Liu Y, Jia Y, Han H S, Sun D H. J. Bionic. Eng., 2014, 11(1): 115.
[153] Qu Z H, Wang H J, Tang T T, Zhang X L, Wang J Y, Dai K R. Acta Biomaterialia, 2008, 4(5): 1360.
[154] Salerno A, Zeppetelli S, Oliviero M, Battista E, Di Maio E, Iannace S, Netti P A. J. Bioact. Compat. Pol., 2012, 27(3): 210.
[155] Salerno A, Zeppetelli S, Di Maio E, Iannace S, Netti P A. Compos. Sci. Technol., 2010, 70(13): 1838.
[156] Yao C, Li Y, Wu F. Polym. Compos., 2013, 34(7): 1163.
[157] Zhang C Y, Zhang W, Mao L B, Zhao Y, Yu S H. Cryst. Eng. Comm., 2014, 16(40): 9513.
[158] Liu D G, Tian H F, Kumar R, Zhang L N. Macromol. Rapid Comm., 2009, 30(17): 1498.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[4] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[13] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[14] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[15] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.