English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 428-437 DOI: 10.7536/PC151025 前一篇   后一篇

• 综述与评论 •

石墨相氮化碳的改性及在环境净化中的应用

崔言娟*, 王愉雄, 王浩, 陈芳艳   

  1. 江苏科技大学环境与化学工程学院 镇江 212003
  • 收稿日期:2015-10-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 崔言娟 E-mail:yjcui@just.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21503096)和江苏省自然科学基金项目(No. BK20140507)资助

Graphitic Carbon Nitrides: Modifications and Applications in Environmental Purification

Cui Yanjuan*, Wang Yuxiong, Wang Hao, Chen Fangyan   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2015-10-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21503096)and the Natural Science Foundation of Jiangsu Province(No. BK20140507).
利用半导体光催化剂技术可以将环境污染物进行分解、转化和矿化,是解决环境污染问题的一条有效途径.聚合物半导体石墨相氮化碳(g-C3N4)具有独特的电子结构和化学性质,是一种新型的非金属功能性材料,在利用太阳能转化清洁能源和化学合成领域受到广泛关注.近几年,g-C3N4的开发使得利用半导体光催化技术进行环境净化的研究取得了进一步发展.本文围绕g-C3N4作为催化材料在环境净化中的应用,包括对水体有机污染物、细菌、大气污染物、重金属离子、CO2等的分解转化等,综述国内外近年来的一些重要研究进展.并以在降解有机污染物中的应用为例对g-C3N4性能优化的各种改性措施进行了总结.最后,本文对g-C3N4在光催化环境净化反应过程的反应机理进行总结,并对未来发展趋势进行展望.
Semiconductor photocatalytic technology can be used for decomposition, conservation and mineralization of environmental pollutants, so it is a long-term effective approach to purify environmental pollution. Polymer semiconductor graphitic carbon nitride (g-C3N4), a new-type metal-free functional material, possesses distinct electronic structure and chemical property, and has attracted a wide spread attention in clean energy conversation and chemical synthesis using solar power. In recent years, the development of g-C3N4 makes further progress of environmental purification research using semiconductor photocatalytic technology. In this review, some important advances using g-C3N4 as novel photocatalysts for environmental pollutants treatment have been reviewed, including degradation of aqueous organic pollutant, inactivation of bacteria, removal of atmospheric contaminant, detoxication of heavy metal ion, and reduction or conversation of CO2. High efficiency and stability can be maintained during photocatalytic reaction process. For further improve the catalytic efficiency of g-C3N4, many works for structure optimization have been researched. Taking the utilization in degradation of organic pollutant as examples, the modifications of g-C3N4 for photocatalytic performance optimization are summarized, including structure optimization, surface and doping modification, composite semiconductor. The photocatalytic reaction mechanisms of g-C3N4 for pollutants degradation and CO2 reduction are elucidated. In addition, the prospects for the development of g-C3N4 based semiconductor materials and application in environment pollutants treatment are also discussed.

Contents
1 Introduction
2 Modification of g-C3N4 photocatalysts
2.1 Structure optimization
2.2 Surface modification
2.3 Doping modification
2.4 Composite semiconductor
3 Application of g-C3N4 in envrionmental purification
3.1 Degradation of aqueous organic pollutants
3.2 Reduction of heavy metal ions
3.3 Inactivation of bacterial
3.4 Removal of atmospheric pollutants
3.5 Reduction and conservation of CO2
4 Mechanism study of g-C3N4 in degradation of environmental pollutants
5 Conclusion and outlook

中图分类号: 

()
[1] Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110: 6503.
[2] Cates E L, Chinnapongse S L, Kim J, Kim J. Environ. Sci. Technol., 2012, 46: 12316.
[3] Kisch H. Angew. Chem. Int. Ed., 2013, 5: 812.
[4] Wang X, Maeda K, Thomas A, Takanabe K, Calesson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.
[5] Fina F, Callear S K, Carins G M, Irvine J T S. Chem. Mater., 2015, 27: 2612.
[6] Zhang M, Wang X. Energy Environ. Sci., 2014, 7: 1902.
[7] Zhang G, Zang S, Wang X. ACS Catal., 2015, 5: 941.
[8] Zheng D, Pang C, Liu Y, Wang X. Chem. Commun., 2015, 51: 9706.
[9] Zhang J, Zhang M, Lin L, Wang X. Angew. Chem. Int. Ed., 2015, 54: 6297.
[10] Wang Y, Wang X, Antonietti M. Angew. Chem. Int. Ed., 2012, 51: 68.
[11] Cao S, Low J, Yu J, Jaroniec M. Adv. Mater., 2015, 27: 2150.
[12] Li X, Antonietti M. Chem. Soc. Rev., 2013, 42: 6593.
[13] 张金水(Zhang J S), 王 博(Wang B), 王心晨(Wang X C). 化学进展(Progress in Chemistry), 2014, 26(1): 19.
[14] Zhang J, Chen Y, Wang X. Energy Environ. Sci., 2015, 8: 3092.
[15] Zheng Y, Lin L, Wang B, Wang X. Angew. Chem. Int. Ed., 2015, 54: 12868.
[16] Cui Y, Huang J, Fu X, Wang X. Catal. Sci. Technol., 2012, 2: 1396.
[17] Zhang M, Xu J, Zong R, Zhu R. Appl. Catal. B: Environ., 2014, 147: 229.
[18] Niu P, Yin L, Yang Y, Liu G, Cheng H. Adv. Mater., 2014, 26: 8046.
[19] Fan Q, Liu J, Yu Y, Zuo S. RSC Adv., 2014, 4: 61877.
[20] Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chem. Mater., 2009, 21: 4093.
[21] Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Nat. Commun., 2012, 3: 1139.
[22] Zhang J, Zhang M, Yang C, Wang X. Adv. Mater., 2014, 26: 4121.
[23] Zheng Y, Lin L, Ye X, Guo F, Wang X. Angew. Chem. Int. Ed., 2014, 53: 11926.
[24] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51: 11814.
[25] Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M. J. Am. Chem. Soc., 2013, 135: 7118.
[26] Jun Y, Lee E Z, Wang X, Hong W H, Stucky G D, Thomas A. Adv. Funct. Mater., 2013, 23: 3661.
[27] Ge L, Han C, Liu J, Li Y. Appl. Catal. A: Gen., 2011, 409/410: 215.
[28] Li X, Wang X, Antonietti M. Chem. Sci., 2012, 3: 2170.
[29] Guo Y, Chu S, Yan S, Wang Y, Zou Z. Chem. Commun.,2010, 46: 7325.
[30] Liu C, Jing L, He L, Luan Y, Li C. Chem.Commun., 2014, 50: 1999.
[31] Lu W, Xu T, Wang Y, Hu H, Li N, Jiang X, Chen W. Appl. Catal. B: Environ., 2016, 180: 20.
[32] Wang X, Chen X, Thomas A, Fu X, Antonietti M. Adv. Mater., 2009, 21: 1609.
[33] Zhang G, Huang C, Wang X. Small, 2015, 11: 1215.
[34] Hu S, Li F, Fan Z, Wang F, Zhao Y, Lv Z. Dalton Trans., 2015, 44: 1084.
[35] Yan S, Li Z, Zou Z. Langmuir, 2010, 26: 3894.
[36] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q, Cheng H. J. Am. Chem. Soc., 2010, 132: 11642.
[37] Lin Z, Wang X. Angew. Chem. Int. Ed., 2013, 52: 1735.
[38] Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X. Adv. Mater., 2014, 26: 805.
[39] Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M,Wang X. Nat. Commun., 2015, 6: 7698.
[40] Chen Z, Sun P, Fan B, Liu Q, Zhang Z, Fang X. Appl. Catal. B: Environ., 2015, 170/171: 10.
[41] Chen D, Wang K, Xiang D, Zong R, Yao W, Zhu Y. Appl. Catal. B: Environ., 2014, 147: 554.
[42] Zhou X, Yao S, Long Y, Wang Z, Li W. Mater. Lett., 2015, 145: 23.
[43] Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J. ACS Appl. Mater. Interfaces, 2015, 7: 9023.
[44] Xu Y, Zhang W. Sci. Adv. Mater., 2014, 6: 2611.
[45] Chen L, Zhang W. Sci. Adv. Mater., 2014, 6: 1091.
[46] 崔言娟(Cui Y J). 催化学报(Chin. J. Catal.), 2015, 36: 372.
[47] Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H. J. Mater. Chem. A, 2014, 2: 5340.
[48] Wang S, Li D, Sun C, Yang S, Guan Y, He H. Appl. Catal. B: Environ., 2014,144: 885.
[49] Qiu P, Chen H, Jiang F. RSC Adv. 2014, 4: 39969.
[50] Jiang Z, Jiang D, Yan Z, Liu D, Qian K, Xie J. Appl. Catal. B: Environ., 2015, 170/171: 195.
[51] Pawar R C, Khare V, Lee C S. Dalton Trans., 2014, 43: 12514.
[52] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem., 2012, 22: 2721.
[53] Chai B, Liao X, Song F, Zhou H. Dalton Trans., 2014, 43: 982.
[54] Li H, Liu Y, Gao X, Fu C, Wang X. ChemSusChem, 2015, 8: 1189.
[55] Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X. Phys. Chem. Chem. Phys., 2012, 14: 1455.
[56] Xiao J, Xie Y, Cao H, Wang Y, Zhao Z. Catal. Commun., 2015, 66: 10.
[57] Liu J, Zhang T, Wang Z, Dawsona G, Chen W. J. Mater. Chem., 2011, 21: 14398.
[58] Ge L. Mater. Lett., 2011, 65: 2652.
[59] Wu S, Chen C, Zhang W. Chin. Chem. Lett., 2014, 25: 1247.
[60] Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W. Appl. Catal. B: Environ., 2016, 180: 663.
[61] Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L. Appl. Catal. B: Environ., 2013, 142/143: 553.
[62] Xue J, Ma S, Zhou Y, Zhang Z, He M. ACS Appl. Mater. Interfaces, 2015, 7: 9630.
[63] He M, Zhao D, Xia J, Xu L, Di J, Xu H, Yin S, Li H. Mater. Sci. Semicond. Process, 2015, 32: 117.
[64] Dong G, Zhao K, Zhang L. Chem. Commun., 2012, 48: 6178.
[65] Zhang H, Zhao L, Geng F, Guo L, Wan B, Yang Y. Appl. Catal. B: Environ., 2016, 180: 656.
[66] Zhang L, Chen X, Guan J, Jiang Y, Hou T, Mu X. Mater. Res. Bull., 2013, 48: 3485.
[67] Cheng N, Tian J, Liu Q, Ge C, Qusti A H, Abdullah M. Asiri A M, Al-Youbi A O, Sun X. ACS Appl. Mater. Interfaces, 2013, 5: 6815.
[68] Chen D, Wang K, Hong W, Zong R, Yao W, Zhu Y. Appl. Catal. B: Environ., 2015, 166/167: 366.
[69] Ding M, Wang W, Zhou Y, Lu C, Ni Y, Xu Z. J. Alloys Compd., 2015, 635: 34.
[70] Fu J, Chang B, Tian Y, Xi F, Dong X. J. Mater. Chem. A, 2013, 1: 3083.
[71] Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Nanoscale, 2014, 6: 4830.
[72] Pawar R C, Kang S, Ahn S H, Lee C S. RSC Adv., 2015, 5: 24281.
[73] Obregón S, Colón G. Appl. Catal. B: Environ., 2014, 144: 775.
[74] Hu X, Ji H, Chang F, Luo Y. Catal. Today, 2014, 224: 34.
[75] Sridharan K, Jang E, Park T J. Appl. Catal. B: Environ., 2013, 142/143: 718.
[76] Hou Y, Wen Z, Cui S, Guo X, Chen J. Adv. Mater., 2013, 25: 6291.
[77] Dong G, Zhang L. J. Phys. Chem. C, 2013, 117: 4062.
[78] Zhang Y, Zhang Q, Shi Q, Cai Z, Yang Z. Sep. Purif. Technol., 2015, 142: 251.
[79] Wang W, Yu J C, Xia D, Wong P K, Li Y. Environ. Sci. Technol. 2013, 47: 8724.
[80] Huang J, Ho W,Wang X. Chem. Commun., 2014, 50: 4338.
[81] Dong F, Wang Z, Sun Y, Ho W, Zhang H. J. Colloid Interface Sci., 2013, 401: 70.
[82] Dong F, Ou M, Jiang Y, Guo S, Wu Z. Ind. Eng. Chem. Res., 2014, 53: 2318.
[83] Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho W. ACS Appl. Mater. Interfaces, 2013, 5: 11392.
[84] Dong F, Ni Z, Li P, Wu Z. New J. Chem., 2015, 39: 4737.
[85] Sun Y, Zhang W, Xiong T, Zhao Z, Dong F, Wang R, Ho W. J. Colloid Interface Sci., 2014, 418: 317.
[86] Dong F, Wang Z, Li Y, Ho W, Lee S C. Environ. Sci. Technol. 2014, 48: 10345.
[87] Wang Z, Guan W, Sun Y, Dong F, Zhou Y, Ho W. Nanoscale, 2015, 7: 2471.
[88] Ho W, Zhang Z, Xu M, Zhang X, Wang X, Huang Y. Appl. Catal. B: Environ., 2015,179: 106.
[89] Nie H, Ou M, Zhong Q, Zhang S, Yu L. J. Hazard. Mater., 2015, 300: 598.
[90] Zhao Z, Dai Y. J. Mater. Chem. A, 2014, 2: 13442.
[91] Chen X, Huang X, Yi Z. Chem. Eur. J., 2014, 20: 17590.
[92] Muñoz-Batista M, Kubacka A, Fernández-García M. Catal. Sci. Technol., 2014, 4: 2006.
[93] Yu J, Wang S, Low J, Xiao W. Phys. Chem. Chem. Phys., 2013, 15: 16883.
[94] Katsumata K, Motoyoshi R, Matsushita N, Okada K. J. Hazard. Mater., 2013, 260: 475.
[95] Jin Z, Murakami N, Tsubota T, Ohno T. Appl. Catal. B: Environ., 2014, 150/151: 479.
[96] Dong G, Zhang L. J. Mater. Chem., 2012, 22: 1160.
[97] Mao J, Peng T, Zhang X, Li K, Ye L, Zan L. Catal. Sci. Technol., 2013, 3: 1253.
[98] Maeda K, Sekizawa K, Ishitani O. Chem. Commun., 2013, 49: 10127.
[99] Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O. J. Mater. Chem. A, 2014, 2: 15146.
[100] Kuriki R, Sekizawa K, Ishitani O, Maeda K. Angew. Chem. Int. Ed., 2015, 54: 2406.
[101] Zhang G, Lan Z, Wang X. ChemCatChem, 2015, 7: 1422.
[102] Lin J, Pan Z, Wang X. ACS Sustain. Chem. Eng., 2014, 2: 353.
[103] Qin J, Wang S, Ren H, Hou Y, Wang X. Appl. Catal. B: Environ., 2015, 179: 1.
[104] Ong W, Tan L, Chai S, Yong S. Dalton Trans., 2015, 44: 1249.
[105] Yu J, Wang K, Xiao W, Cheng B. Phys. Chem. Chem. Phys., 2014, 16: 11492.
[106] Bai S, Wang X, Hu C, Xie M, Jiang J, Xiong Y. Chem. Commun., 2014, 50: 6094.
[107] Cao S, Liu X, Yuan Y, Zhang Z, Liao Y, Fang J, Loo S C J, Sum T C, Xue C. Appl. Catal. B: Environ., 2014, 147: 940.
[108] He Y, Zhang L, Fan M, Wang X, Walbridge M L, Nong Q, Wu Y, Zhao L. Sol. Energy Mater. Sol. Cells, 2015, 137: 175.
[109] Yuan Y, Cao S, Liao Y, Yin L, Xue C. Appl. Catal. B: Environ., 2013, 140/141: 164.
[110] Su Q, Sun J, Wang J, Yang Z, Cheng W, Zhang S. Catal. Sci. Technol., 2014, 4: 1556.
[111] Xu J, Wu F, Jiang Q, Li Y. Catal. Sci. Technol., 2015, 5: 447.
[112] Lakhi K S, Cha W S, Joseph S, Wood B J, Aldeyab S S, Lawrence G, Choy J, Vinu A. Catal. Today, 2015, 243: 209.
[113] Fettkenhauer C, Weber J, Antonietti M, Dontsova D. RSC Adv., 2014, 4: 40803.
[114] Xu Y, Gao S. Int. J. Hydrogen Energy., 2012, 37: 11072.
[115] Wei W, Jacob T. Phys. Rev. B, 2013, 87: 085202.
[116] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping J, Fu X, Antonietti M, Wang X. Angew. Chem. Int. Ed., 2010, 49: 441.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[12] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[13] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[14] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[15] 任志华, 杨晓溪, 孙振东, 任婧, 桑楠, 周群芳, 江桂斌. 环境内分泌干扰物对雌激素受体表达与转录激活的调控效应及分析技术[J]. 化学进展, 2022, 34(10): 2121-2133.