English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 244-259 DOI: 10.7536/PC150901 前一篇   后一篇

• 综述与评论 •

酸碱驱动的分子机器研究与应用

张双进1, 杨扬1*, 孙小强1, 尹芳华1, 强琚莉2, 王乐勇2   

  1. 1. 常州大学石油化工学院 常州 213164;
    2. 南京大学化学化工学院 南京 210093
  • 收稿日期:2015-09-01 修回日期:2015-09-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 杨扬 E-mail:yangyang@cczu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21572026),江苏高校优势学科建设工程项目和江苏省绿色催化材料与技术重点实验室项目(No.BM2012110)资助

Molecular Machines Driven by Acid-Base Chemistry and Their Applications

Zhang Shuangjin1, Yang Yang1*, Sun Xiaoqiang1, Yin Fanghua1, Jiang Juli2, Wang Leyong2   

  1. 1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
    2 School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2015-09-01 Revised:2015-09-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21572026), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (No. BM2012110).
酸碱驱动的分子机器是化学驱动的分子机器的重要组成部分,是构筑分子机器的研究热点。近年来,酸碱驱动的分子机器理论研究水平不断提高。在此基础上,围绕构筑功能性、实用型的分子机器的研究成果也不断出现。目前,酸碱度驱动的分子机器在超分子凝胶、超分子催化、药物载体、超分子阀门、超分子聚合物等方面表现出很好的应用价值。本文以分子机器的酸碱驱动力为主题,分别从准轮烷、轮烷及索烃等角度,综述了近年来分子机器在合成方面的研究进展,并对酸碱度驱动的分子机器的应用实例进行总结,最后对酸碱驱动的分子机器的完善空间和发展趋势进行了展望。
As one of the important parts of the molecular machines, molecular machines driven by acid-base chemistry play the crucial role in molecular machines, and have attracted more and more attentions for the applications in the design and construction of controllable molecular machines. At the same time, owing to the great progresses in theory studies of the molecular machine, several different kinds of functional and practical molecular machines driven by acid-base stimuli have been reported and utilized in supramolecular gels, supramolecular catalysts, supramolecular vesicles, supramolecular nanovalves, supramolecular polymers, and so on. In this paper, the design and applications of acid-base controllable molecular machines based on pseudorotaxanes, rotaxanes, and catenanes are reviewed, and the prospects of such molecular machines are also described.

Contents
1 Introduction
2 Molecular machines driven by acid-base chemistry
2.1 Acid-base driven molecular machines based on pseudorotaxanes
2.2 Acid-base driven rotaxanes-based molecular machines
2.3 Catenane-type molecular machines driven by acid-base stimuli
3 The applications of acid-base driven molecular machines
3.1 Supramolecular gel
3.2 Treatment of paraquat poisoning and supramolecular vesicles
3.3 Supramolecular catalysis
3.4 Supramolecular nanovalve
3.5 Supramolecular polymer
4 Conclusion and outlook

中图分类号: 

()
[1] Balzani V, Gómez-López M, Stoddart J F. Acc. Chem. Res., 1998, 31(7):405.
[2] Ballardini R, Balzani V, Credi A, Gandolfi M T, Venturi M. Acc. Chem. Res., 2001, 34(6):445.
[3] Grabuleda X, Jaime C. J. Org. Chem., 1998, 63(26):9635.
[4] Murakami H, Kawabuchi A, Matsumoto R, Ido T, Nakashima N. J. Am. Chem. Soc., 2005, 127(45):15891.
[5] Zhu L, Yan H, Wang X J, Zhao Y. J. Org. Chem., 2012, 77(22):10168.
[6] Raju M V R, Raghunath P, Lin M C, Lin H C. Macromolecules, 2013, 46(17):6731.
[7] Raju M V, Lin, H C. Org. Lett., 2014, 16(21):5564.
[8] Lubbe A S, Ruangsupapichat N, Caroli G, Feringa B L. J. Org. Chem., 2011, 76(21):8599.
[9] Lard M, ten Siethoff L, Generosi J, Månsson A, Linke H. Nano Lett., 2014, 14(6):3041.
[10] Marsella M J, Rahbarnia S, Wilmot N. Org. Biomol. Chem., 2007, 5(3):391.
[11] Grosu Y, Renaudin G, Eroshenko V, Nedelec J M, Grolier J P. Nanoscale, 2015, 7(19):8803.
[12] Liu Y, Flood A H, Bonvallet P A, Vignon S A, Northrop B H, Tseng H R, Jeppesen J O, Huang T J, Brough B, Baller M, Magonov S, Solares S D, Goddard W A, Ho C M, Stoddart J F. J. Am. Chem. Soc., 2005, 127(27):9745.
[13] Bruns C J, Stoddart J F. Acc. Chem. Res., 2014, 47(7):2186.
[14] Dial B E, Pellechia P J, Smith M D, Shimizu K D. J. Am. Chem. Soc., 2012, 134(8):3675.
[15] Kobr L, Zhao K, Shen Y, Shoemaker R K, Rogers C T, Michl J. Cryst. Growth Des., 2014, 14(2):559.
[16] Delius M V, Leigh D A. Chem. Soc. Rev., 2011, 40:3656.
[17] Carlone A, Goldup S M, Lebrasseur N, Leigh D A, Wilson A. J. Am. Chem. Soc., 2012, 134(20):8321.
[18] Alvarez-Pérez M, Goldup S M, Leigh D A, Slawin A M Z. J. Am. Chem. Soc.,2008, 130(6):1836.
[19] Zhang Z J, Han M, Zhang H Y, Liu Y. Org. Lett., 2013, 15(7):1698.
[20] Badjic J D, Ronconi C M, Stoddart J F, Balzani V, Silvi S, Credi A. J. Am. Chem. Soc., 2006, 128(5):1489.
[21] Badjic J D, Balzani V, Credi A, Silvi S, Stoddart J F. Science, 2004, 303(5665):1845.
[22] Chang T, Heiss A M, Cantrill S J, Fyfe M C T, Pease A R, Rowan S J, Stoddart J F, White A J P, Williams D J. Org. Lett., 2000, 2(19):2947.
[23] Forgan R S, Gassensmith J J, Cordes D B, Boyle M M, Hartlieb K J, Friedman D C, Slawin A M, Stoddart J F. J. Am. Chem. Soc., 2012, 134(41):17007.
[24] Blanco V, Chas M, Abella D, Peinador C, Quintela J M. J. Am. Chem. Soc., 2007, 129(45):13978.
[25] Beves J E, Blanco V, Blight B A, Carrillo R, D'Souza D M, Howgego D, Leigh D A, Slawin A M, Symes M D. J. Am. Chem. Soc., 2014, 136(5):2094.
[26] Wang Z, Takashima Y, Yamaguchi H, Harada A. Org. Lett., 2011, 13(16):4356.
[27] Yang C, Ko Y H, Selvapalam N, Origane Y, Mori T, Wada T, Kim K, Inoue Y. Org. Lett., 2007, 9(23):4789.
[28] Zhang C, Li S, Zhang J, Zhu K, Li N, Huang F. Org. Lett., 2007, 9(26):5553.
[29] Zheng B, Zhang M, Dong S, Yan X, Xue M. Org. Lett., 2013, 15(14):3538.
[30] Collin J P, Dietrich-Buchecker C, Gaviña P, Jimenez-Molero M C, Sauvage J P. Acc. Chem. Res., 2001, 34(6):477.
[31] Poleschak I, Kern J M, Sauvage J P. Chem. Commun., 2004, (4):474.
[32] Yang W, Li Y, Liu H, Chi L, Li Y. Small, 2012, 8(4):504.
[33] Zhu K, Vukotic V N, Loeb S J. Angew. Chem. Int. Ed., 2012, 51(9):2168.
[34] Zhou W, Xu J, Zheng H, Liu H, Li Y, Zhu D. J. Org. Chem., 2008, 73(19):7702.
[35] Leigh D A, Morales M A, Perez E M, Wong J K, Saiz C G, Slawin A M, Carmichael A J, Haddleton D M, Brouwer A M, Buma W J, Wurpel G W, Leon S, Zerbetto F. Angew. Chem. Int. Ed., 2005, 44(20):3062.
[36] Saha S, Flood A H, Stoddart J F, Impellizzeri S, Silvi S, Venturi M, Credi A. J. Am. Chem. Soc. 2007, 129(40):12159.
[37] Collier, C P. Science, 1999, 285(5426):391.
[38] Collier C P. Science, 2000, 289(5482):1172.
[39] Wang Q C, Qu D H, Ren J, Chen K, Tian H. Angew. Chem. Int. Ed., 2004, 43(20):2661.
[40] Balzani V, Credi A, Venturi M. Chem. Soc. Rev., 2009, 38(6):1542.
[41] Ceroni P, Credi A, Venturi M, Balzani V. Photochem. Photobiol. Sci., 2010, 9(12):1561.
[42] 刘立(Liu L). 南京大学博士论文(Doctoral Dissertation of Nanjing University), 2014.
[43] Elizarov A M, Chiu S H, Stoddart J F. J. Org. Chem., 2002, 67(26):9175.
[44] Vella S J, Tiburcio J, Loeb S J. Chem. Commun., 2007, (45):4752.
[45] Li H, Zhang J N, Zhou W, Zhang H, Zhang Q, Qu D H, Tian H. Org. Lett., 2013, 15(12):3070.
[46] Ma Y X, Meng Z, Chen C F. Org. Lett., 2014, 16(7):1860.
[47] Liu L, Liu Y, Liu P, Wu J, Guan Y, Hu X, Lin C, Yang Y, Sun X, Ma J, Wang L. Chem. Sci., 2013, 4(4):1701.
[48] Matthews O A, Raymo F M, Stoddart J F, White A J P, Williams D J. New J. Chem., 1998, 22:1131.
[49] Grunder S, McGrier P L, Whalley A C, Boyle M M, Stern C, Stoddart J F. J. Am. Chem. Soc., 2013, 135(47):17691.
[50] Buyukcakir O, Yasar F T, Bozdemir O A, Icli B, Akkaya E U. Org. Lett., 2013, 15(5):1012.
[51] Cao Y, Li Y, Hu X Y, Zou X, Xiong S, Lin C, Wang L. Chem. Mater., 2015, 27(3):1110.
[52] Ashton P R, Ballardini R, Balzani V, Gómez-López M, Lawrence S E, Martínez-Díaz M V, Montalti M, Piersanti A, Prodi L, Stoddart J F, Williams D J. J. Am. Chem. Soc., 1997, 119(44):10641.
[53] Ishow E, Credi A, Balzani V, Spadola F, Mandolini L. Chem. Eur. J., 1999, 5(3):984.
[54] Zheng B, Zhang M, Dong S, Liu J, Huang F. Org. Lett., 2012, 14(1):306.
[55] Ji X, Zhang M, Yan X, Li J, Huang F. Chem. Commun., 2013, 49(12):1178.
[56] Zhang H, Wang Q, Liu M, Ma X, Tian H. Org. Lett., 2009, 11(15):3234.
[57] Ashton P R, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe M C T, Gandolfi M T, Gómez-López M, Martínez-Díaz M V, Piersanti A, Spencer N, Stoddart J. F, Venturi M, White A J P, Williams D J. J. Am. Chem. Soc., 1998, 120(46):11932.
[58] Leigh D A, Thomson A R. Org. Lett., 2006, 8(23):5377.
[59] Zhang S J, Wang Q, Cheng M, Qian X H, Yang Y, Jiang J L, Wang L Y. Chin. Chem. Lett., 2015, 26(7):885.
[60] Busseron E, Romuald C, Coutrot F. Chem. Eur. J., 2010, 16(33):10062.
[61] Jiang Q, Zhang H Y, Han M, Ding Z J, Liu Y. Org. Lett., 2010, 12(8):1728.
[62] Zhao Y, Li Y, Lai S W, Yang J, Liu C, Liu H, Che C M, Li Y. Org. Biomol. Chem., 2011, 9(21):7500.
[63] Mateo-Alonso A, Ehli C, Rahman G M A, Guldi D M, Fioravanti G, Marcaccio M, Paolucci F, Prato M. Angew. Chem. Int. Ed., 2007, 46(19):3521.
[64] Mateo-Alonso A, Ehli C, Guldi D M, Prato M. Org. Lett., 2013, 15(1):84.
[65] Li H, Li X, Wu Y, Agren H, Qu D H. J. Org. Chem., 2014, 79(15):6996.
[66] Li H, Li X, Agren H, Qu D H. Org. Lett., 2014, 16(18):4940.
[67] Zhang H, Hu J, Qu D H. Org. Lett., 2012, 14(9), 2334.
[68] Zhang H, Zhou B, Li H, Qu D H, Tian H. J. Org. Chem., 2013, 78(5):2091.
[69] Cao Z Q, Miao Q, Zhang Q, Li H, Qu D H, Tian H. Chem. Commun., 2015, 51(24):4973.
[70] Liu L, Wang Q, Cheng M, Hu X Y, Jiang J L, Wang L Y. Asian J. Org. Chem., 2015, 4(3):221.
[71] Yang W, Li Y, Zhang J, Chen N, Chen S, Liu H, Li Y. J. Org. Chem., 2011, 76(19):7750.
[72] Lewandowski B, Bo G D, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D'Souza D M, Fernandes A E, Leigh D A. Science, 2013, 339(6116):189.
[73] Li Y, Wang T, Liu M. Tetrahedron, 2007, 63(31):7468.
[74] Kim T H, Choi M S, Sohn B H, Park S Y, Lyoo W S, Lee, T S. Chem. Commun., 2008, (20):2364.
[75] Chen C T, Chen C H, Ong T G. J. Am. Chem. Soc., 2013, 135(14):5294.
[76] Hsueh S Y, Kuo C T, Lu T W, Lai C C, Liu Y H, Hsu H F, Peng S M, Chen C H, Chiu S H. Angew. Chem. Int. Ed., 2010, 49(48):9170.
[77] Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J. Am. Chem. Soc., 2012, 134(47):19489.
[78] Sun T, Guo Q, Zhang C, Hao J, Xing P, Su J, Li S, Hao A, Liu G. Langmuir, 2012, 28(23):8625.
[79] Yu G, Xue M, Zhang Z, Li J, Han C, Huang F. J. Am. Chem. Soc., 2012, 134(32):13248.
[80] Wu X, Li Y, Lin C, Hu X Y, Wang L. Chem. Commun., 2015, 51(31):6832.
[81] Cao Y, Hu X Y, Li Y, Zou X, Xiong S, Lin C, Shen Y Z, Wang L. J. Am. Chem. Soc., 2014, 136(30):10762.
[82] Hu X Y, Jia K, Cao Y, Li Y, Qin S, Zhou F, Lin C, Zhang D, Wang L. Chem. Eur. J., 2015, 21(3):1208.
[83] Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C. Pan Y, Wang L. J. Am. Chem. Soc., 2013, 135(28):10542.
[84] Monnereau C, Ramos P H, Deutman A B C, Elemans J A A W, Nolte R J M, Rowan A E. J. Am. Chem. Soc., 2010, 132(5):1529.
[85] Slagt V F, van Leeuwen P W, Reek J N. Dalton Trans., 2007, (22):2302.
[86] Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S. Chem. Commun., 2009, (16):2100.
[87] Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Langmuir, 2011, 27(22):13847.
[88] Blanco V, Leigh D A, Lewandowska U, Lewandowski B, Marcos V. J. Am. Chem. Soc., 2014, 136(44):15775.
[89] Suzaki Y, Shimada K, Chihara E, Saito T, Tsuchido Y, Osakada K. Org. Lett., 2011, 13(15):3774.
[90] Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Angew. Chem. Int. Ed., 2011, 50(33):7524.
[91] Leigh D A, Marcos V, Wilson M R. ACS Catal., 2014, 4(12):4490.
[92] Blanco V, Carlone A, Hanni K D, Leigh D A, Lewandowski B. Angew. Chem. Int. Ed., 2012, 51(21):5166.
[93] Blanco V, Leigh D A, Marcos V, Morales-Serna J A, Nussbaumer A L. J. Am. Chem. Soc., 2014, 136(13):4905.
[94] Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Chem. Mater., 2006, 18(25):5919.
[95] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126(11):3370.
[96] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132(36):12690.
[97] Angelos S, Yang Y W, Khashab N M, Stoddart J F, Zink J I, J. Am. Chem. Soc., 2009, 131(32):11344.
[98] Nguyen T D, Leung K C F, Liong M, Pentecost C D, Stoddart J F, Zink J I. Org. Lett., 2006, 8(15):3363.
[99] 赵金(Zhao J), 刘育(Liu Y). 化学进展(Progress in Chemistry), 2015, 27(6):687.
[100] Dong S, Zheng B, Zhang M, Yan X, Ding X, Yu Y, Huang F. Macromolecules, 2012, 45(22):9070.
[101] Li S, Weng G H, Lin W, Sun Z B, Zhou M, Zhu B, Ye Y, Wu J. Polym. Chem., 2014, 5(13):3994.
[102] Ma X, Sun R, Li W, Tian H. Polym. Chem., 2011, 2(5):1068.
[103] Sun R, Zhang Q, Wang Q, Ma X. Polymer, 2013, 54(10):2506.
[104] Yao X, Ma X, Tian H. J. Mater. Chem. C, 2014, 2(26):5155.
[1] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[2] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.
[3] 杨再文, 刘向荣, 赵顺省, 何金梅. 化学驱动的[2]轮烷型分子梭[J]. 化学进展, 2014, 26(12): 1899-1913.
[4] 孙书, 石建兵, 董宇平, 胡晓玉, 王乐勇. 准聚轮烷的研究进展[J]. 化学进展, 2014, 26(08): 1409-1426.
[5] 王光霞, 车延科, 江华. 旋转型单分子机器[J]. 化学进展, 2014, 26(06): 909-918.
[6] 刘鹏, 邵学广, 蔡文生*. 准轮烷/轮烷在药物载体中的应用[J]. 化学进展, 2013, 25(05): 692-697.
[7] 董海青, 李永勇, 李兰, 时东陆. 生物医用类环糊精/聚合物(准)聚轮烷[J]. 化学进展, 2011, 23(5): 914-922.
[8] 孙涛 张华承 李月明 辛飞飞 孔丽 郝爱友. 基于环糊精和富勒烯偶联体系的新型分子机器*[J]. 化学进展, 2010, 22(11): 2156-2164.
[9] 邓超 韩军 滕明瑜 赵德阳 王乐勇. 分子陀螺的设计、合成与组装[J]. 化学进展, 2010, 22(06): 1021-1034.
[10] 赵三平 徐卫林. 环糊精超分子水凝胶*[J]. 化学进展, 2010, 22(05): 916-926.
[11] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
[12] 杨辉,谭业邦,黄晓玲,王月霞. 葫芦脲的研究进展*[J]. 化学进展, 2009, 21(01): 164-173.
[13] 靖波,陈晓,柴永存. 环糊精与大分子组装(准)聚轮烷*[J]. 化学进展, 2006, 18(10): 1361-1368.
阅读次数
全文


摘要

酸碱驱动的分子机器研究与应用