English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 328-336 DOI: 10.7536/PC150823 前一篇   后一篇

• 综述与评论 •

N-乙烯基己内酰胺的活性/可控自由基聚合

何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅*   

  1. 云南师范大学化学化工学院 昆明 650500
  • 收稿日期:2015-08-01 修回日期:2015-10-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 毕韵梅 E-mail:yunmeibi@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.20864003,21264017)资助

Living/Controlled Free Radical Polymerization of N-Vinyl Caprolactam

He Fuxi, Tang Gang, Min Xiaoyan, Hu Minqi, Shao Lidong, Bi Yunmei*   

  1. College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
  • Received:2015-08-01 Revised:2015-10-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 20864003, 21264017).
聚(N-乙烯基己内酰胺)(PNVCL)是一种重要的温度响应性聚合物,其最低临界溶液温度(LCST)在生理温度范围内,而且PNVCL水解不会产生有毒的小分子胺,其单体价格便宜,因此PNVCL及其共聚物在生物医药领域具有潜在的应用价值和较好的工业化前景。活性/可控自由基聚合是合成PNVCL及其共聚物的重要手段。本文综述了N-乙烯基己内酰胺(NVCL)的原子转移自由基聚合(ATRP),可逆加成-断裂链转移(RAFT)聚合和有机钴调控自由基聚合(CMRP)的研究进展。对配体、溶剂、引发剂对NVCL 的ATRP的影响进行了讨论。概述了黄原酸酯、二硫代酸酯、二硫代氨基甲酸酯、三硫代酸酯链转移剂调控的NVCL的RAFT聚合。对单体加入顺序对合成基于PNVCL的嵌段共聚物的影响和活性/可控自由基聚合在合成拓扑结构高分子中的应用进行了介绍。最后对NVCL的活性/可控自由基聚合的发展方向进行了展望。
Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer with a lower critical solution temperature (LCST) close to body temperature. The hydrolysis of PNVCL does not produce toxic amine compounds. And PNVCL derives from an inexpensive commercially available monomer, N-vinyl caprolactam (NVCL). These make PNVCL and PNVCL-based polymers highly useful for biomedical applications and open perspectives for industrialization. But NVCL is a typical non-conjugated monomer and it can only be polymerized via radical polymerization, thus living/controlled free radical polymerization of NVCL is the only possible means to obtain the desired well-defined polymeric structure. This review summarizes recent advances regarding the living/controlled radical polymerization of N-vinylcaprolactam, including atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and cobalt-mediated radical polymerization (CMRP). The influence of ligands, solvents, and initiators on ATRP of NVCL is introduced. RAFT polymerizations of NVCL are discussed by xanthate-mediated, dithiocarbamate-mediated, dithioester-mediated and trithiocarbonate-mediated controlled radical polymerization. We also highlight recent results in influence of the sequence of monomer addition on synthesis of NVCL-based block copolymers and the controlled synthesis of PNVCL-containing topological macromolecules, such as linear-dendritic block copolymers, star polymers, hyperbranched block copolymers and cyclic polymers obtained by controlled radical polymerization of NVCL. The future directions in living/controlled free radical polymerization of N-vinylcaprolactam are also discussed.

Contents
1 Introduction
2 ATRP of NVCL
2.1 Influence of ligands
2.2 Influence of solvents
2.3 Influence of initiators
3 RAFT polymerization of NVCL
3.1 Xanthate-mediated RAFT polymerization
3.2 Dithiocarbamate-mediated RAFT polymerization
3.3 Dithioester-mediated RAFT polymerization
3.4 Trithiocarbonate-mediated RAFT polymerization
4 CMRP of NVCL
5 Influence of the sequence of monomer addition on synthesis of NVCL-based block copolymers
6 Combination of two different living/controlled free radical polymerization techniques
7 The controlled synthesis of PNVCL-containing topological macromolecules
8 Conclusion

中图分类号: 

()
[1] Szwarc M, Levy M, Milkovich R. J. Am. Chem. Soc., 1956, 78:2656.
[2] 郑璇(Zheng X), 张立武(Zhang L W). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2006, 22(2):16.
[3] Ramos J, Imaz A, Forcada J. Polym. Chem., 2012, 3:852.
[4] Elena E. Makhaeva, Tenhu H, Khokhlov A R. Macromolecules, 1998, 31:6112.
[5] Laukkanen A, Valtola L, Winnik F M, Tenhu H. Macromolecules, 2004, 37:2268.
[6] Mukhuevu E E, Thanh L T M, Sturodoubtsev S G, Khokhlov A R. Macromol.Chem. Phys., 1996, 197:1973.
[7] Mikheeva L M, Grinberg N V, Mashkevich A Y, Grinberg V Y. Macromolecules, 1997, 30:2693.
[8] Vihola H, Laukkanen A, Hirvonen J, Tenhu H. Eur. J. Pharm. Sci., 2002, 16:69.
[9] Liu J, Debuigne A, Detrembleur C, Jérôme C. Adv. Healthcare Mater., 2014, 3:1941.
[10] Mundargia R C, Rangaswamy V, Aminabhavi T M. Des. Monomers Polym., 2010, 13:325.
[11] Vihola H, Laukkanen A, Tenhu H, Hirvonen J. J. Pharm. Sci., 2008, 97:4783.
[12] Rao K M, Mallikarjuna B, Rao K S V K, Siraj S, Rao K C, Subha M C S. Colloids Surf., B, 2013, 102:891.
[13] Rejinold N S, Baby T, Chennazhi K P, Jayakumar R. J. Biomed. Nanotechnol., 2015, 11:392.
[14] Prabaharan M, Grailer J J, Steeber D A, Gong S Q. Macromol. Biosci., 2008, 8:843.
[15] Janssen S, Schwahn D, Mortensen K, Springer T. Macromolecules, 1993, 26:5587.
[16] Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethalsb E, Du Prez F. Polymer, 2000, 41:8597.
[17] Maeda Y, Nakamura T, Ikeda I. Macromolecules, 2002, 35:217.
[18] 浦鸿汀(Pu H T), 蔡相宇(Cai X Y), 万德成(Wan D C), 杨根金(Yang G J). 化学进展(Progress in Chemistry), 2008, 20(10):1572.
[19] Wang J S, Matyjaszewski K. J. Am. Chem. Soc., 1995, 117:5614.
[20] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31:5559.
[21] Wayland B B, Poszmik G, Mukerjee S L. J. Am. Chem. Soc., 1994, 116:7943.
[22] Debuigne A, Caille J R, Jérôme R. Angew. Chem. Int. Ed., 2005, 44:1101.
[23] Lu Z, Fryd M, Wayland B B. Macromolecules, 2004, 37:2686.
[24] Matyjaszewski K, Xia J H. Chem. Rev., 2001, 101:2921.
[25] 潘祖仁(Pan Z R). 高分子化学(Polymer Chemistry), 北京:化学化工出版社(Beijing:Chemical Industry Press), 2003. 69.
[26] Yang Y Z, Li J, Hu M Q, Chen L, Bi Y M. J. Polym. Res. 2014, 21:1.
[27] Negru I, Teodorescu M, Stanescu P O, Draghici C, Lungu A, Sarbu A. Mater. Plast., 2010, 47:35.
[28] Teodorescu M, Matyjaszewski K. Macromolecules, 1999, 32:4826.
[29] Singh P, Srivastava A, Kumar R. J. Polym. Sci. Part A:Polym. Chem., 2012, 50:1503.
[30] Kavitha T, Kang I K, Park S Y. Colloids Surf., B, 2014, 115:37.
[31] Patel R, Ahn S H, Chi W S, Kim J H. Ionics, 2012, 18:395.
[32] Yang Y Z, Tang G, Hu M Q, Shao L D, Li J, Bi Y M. Polymer, 2015, 68:213.
[33] Xia Y, Yin X C, Burke M A D, Stöver H D H. Macromolecules, 2005, 38:5937.
[34] 杨兴兵(Yang X B), 张立武(Zhang L W), 刘静(Liu J), 沈进明(Shen J M), 李圆圆(Li Y Y), 郑妍(Zhen Y). 涂料工业(Paint and Coatings Indusrty), 2010, 10(5):71.
[35] Qian W H, Xu P C, Lu G L, Huang X Y. Chin. J. Chem., 2014, 32:1049.
[36] Moad G, Chiefari J, Chong Y K, Krstina J, Mayadunne R T A, Postma A, Rizzardo E, Thang S H. Polym. Int., 2000, 49:993.
[37] Chong Y K, Le T P T, Moad G, Rizzardo E, Thang S H. Macromolecules, 1999, 32:2071.
[38] 万德成(Wan D C), 周青(Zhou Q). 高分子通报(Polymer Bulletin), 2008, (1):33.
[39] Chiefari J, Mayadunne R T A, Moad C L., Moad G, Rizzardo E, Postma A, Skidmore M A, Thang S H. Macromolecules, 2003, 36:2273.
[40] Chong Y K, Krstina J, Le T P T, Moad G, Postma A, Rizzardo E, Thang S H. Macromolecules, 2003, 36:2256.
[41] Wan D C, Satoh K, Kamigaito M, Okamoto Y. Macromolecules, 2005, 38:10397.
[42] Nguyen T L U, Eagles K, Davis T P, Kowollik C B, Stenzel M H. J. Polym. Sci. Part A:Polym. Chem., 2006, 44:4372.
[43] Destarac M, Bzducha W, Taton D, Gauthier-Gillaizeau I, Zard SZ. Macromol. Rapid Commun., 2002, 23:1049.
[44] Stenzel M H, Cummins L, Roberts G. E, Davis T P, Vana P, Kowollik C B. Macromol. Chem. Phys., 2003, 204, 1160.
[45] Favier A, Kowollik C B, Davis T P, Stenzel M H. Macromol. Chem. Phys., 2004, 205:925.
[46] Coote M L, Radom L. Macromolecules, 2004, 37:590.
[47] 蒋波(Jiang B), 易玲敏(Yi L M), 詹晓力(Zhan X L), 陈碧(Chen B), 陈丰秋(Chen F Q). 化学进展(Progress in Chemistry), 2008, 20(7/8):1128.
[48] Nakabayashi K, Mori H. Eur. Polym. J., 2013, 49:2808.
[49] Beija M, Marty J D, Destarac M. Chem. Commun., 2011, 47:2826.
[50] Yu Y C, Li G X, Kim J S, Youk J H. Polymer, 2013, 54:6119.
[51] Liu J, Detrembleur C, Gillet M C D P, Mornet S, Duguet E, Jérôme C. Polym. Chem., 2014, 5:799.
[52] Liang X, Kozlovskaya V, Cox C P., Wang Y, Saeed M, Kharlampieva E. Polym. Sci. Part A:Polym. Chem., 2014, 52:2725.
[53] Destarac M, Charmot D, Franck X, Zard S Z. Macromol. Rapid Commun., 2000, 21:1035.
[54] Benaglia M, Chiefari J, Chong Y K, Moad G, Rizzardo E, Thang S H. J. Am. Chem. Soc., 2009, 131, 6914.
[55] Wan D C, Zhou Q, Pu H T, Yang G J. Polym. Sci. Part A:Polym. Chem., 2008, 46:3756.
[56] Tian W, Lv X Y, Huang L B, Ali N, Kong J. Macromol. Chem. Phys., 2012, 213:2450.
[57] 陈卫星(Chen W X), 范晓东(Fan X D), 刘郁杨(Liu Y Y). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2006, 22(6):44.
[58] Tebaldi M L D S, Chaparro T C, Santos A M. Mater. Sci. Forum., 2010, 636/637:76.
[59] Singh P, Srivastava A, Kumar R. Polymer, 2015, 57:51.
[60] Ponce-Vargas S M, Cortez-Lemus N A, Licea-Claveríe A. Macromol. Symp., 2013, 325/326:56.
[61] Shao L D, Hu M Q, Chen L, Xu L, Bi Y M. React. Funct. Polym., 2012, 72:407.
[62] Peng C H, Fryd M, Wayland B B. Macromolecules, 2007, 40:6814.
[63] Debuigne A, Willet N, Jérôme R, Detrembleur C. Macromolecules, 2007, 40:7111.
[64] Debuigne A, Michaux C, Jérôme C, Jérôme R, Poli R, Detrembleur C. Chem. Eur. J., 2008, 14:7623.
[65] Yusa S I, Yamago S, Sugahara M, Morikawa S, Yamamoto T, Morishima Y. Macromolecules, 2007, 40:5907.
[66] Bunck D N, Sorenson G P, Mahanthappa M K. J. Polym. Sci. Part A:Polym. Chem., 2011,49:242.
[67] Liao C M, Hsu C C, Wang F S, Bradford B. Waylandb B B, Peng C H. Polym. Chem., 2013, 4:3098.
[68] Debuigne A, Poli R, Jérôme C, Jérôme R, Detrembleura C. Prog. Polym. Sci., 2009, 34:211.
[69] Hurtgen M, Liu J, Debuigne A, Jérôme C, Detrembleur C. J. Polym. Sci. Part A:Polym. Chem., 2012, 50:400.
[70] Kermagoret A, Fustin C A, Bourguignon M, Detrembleur C, Jérôme C, Debuigne A. Polym. Chem., 2013, 4:2575.
[71] Kermagoret A, Mathieu K, Thomassin J K, Fustin C A, Duchêne R, Jérôme C, Detrembleura C, Debuigne A. Polym. Chem., 2014, 5:6534.
[72] Thomassin J M, Mathieu K, Kermagoret A, Fustin C A, Jérôme C, Debuigne A. Polym. Chem., 2015, 6, 1856.
[73] Jiang X Y, Li Y J, G L, Huang X Y. Polym. Chem., 2013, 4:1402.
[74] Jiang X Y, Lu G L, Feng C, Li Y J, Huang X Y. Polym. Chem., 2013, 4:3876.
[75] 陈忠春(Chen Z C), 唐建斌(Tang J B), 申有青(Shen Y Q), 王新平(Wang X P). 中国科学:化学(Science China Chemistry), 2011, 41(2):281.
[76] Bi Y M, Yan C X, Shao L D, Wang Y F, Ma Y C, Tang G. J. Polym. Sci. Part A:Polym. Chem., 2013, 51:3240.
[77] García-Olaiz G D, Montoya-Villegas K A, Licea-Claverie A, Cortez-Lemus N A. React. Funct. Polym., 2015, 88:16.
[78] Cai T, Li M, Zhang B, Neoh K, Kang E. J. Mater. Chem. B, 2014, 2:814.
[1] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[2] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[3] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[4] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[5] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[6] 李斌, 于波, 叶谦, 周峰. 外界刺激调控的表面引发原子转移自由基聚合[J]. 化学进展, 2015, 27(2/3): 146-156.
[7] 程传杰, 申亮, 付全磊, 龚珊珊. 活性/可控自由基无皂乳液聚合[J]. 化学进展, 2011, 23(4): 791-799.
[8] 李强 张丽芬 柏良久 缪洁 程振平 朱秀林. 原子转移自由基聚合的最新研究进展*[J]. 化学进展, 2010, 22(11): 2079-2088.
[9] 钱涛 汪涓涓 张庆华 詹晓力 陈丰秋. 原子转移自由基细乳液聚合*[J]. 化学进展, 2010, 22(04): 663-668.
[10] 刘虎,王文浩,胡晓熙,彭慧,易昌凤,徐祖顺. 乳液原子转移自由基聚合*[J]. 化学进展, 2009, 21(6): 1292-1298.
[11] 王新红,李杨,张春庆,宋天喜,王玉荣. 原子转移自由基聚合引发体系的最新研究进展[J]. 化学进展, 2008, 20(11): 1726-1732.
[12] 唐新德,范星河,陈小芳,周其凤. 原子转移自由基聚合( ATRP) 在星形聚合物合成中的应用*[J]. 化学进展, 2005, 17(06): 1089-1095.
[13] 丘坤元,陈小平. “活性”/控制自由基聚合的研究进展[J]. 化学进展, 2001, 13(03): 224-.