English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 337-352 DOI: 10.7536/PC150641 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

基于电化学还原氧化石墨烯的电化学传感

饶红红1*, 薛中华2, 王雪梅2, 赵国虎1, 侯辉辉2, 王晖2   

  1. 1. 兰州城市学院化学与环境科学学院 兰州 730070;
    2. 西北师范大学化学化工学院 兰州 730070
  • 收稿日期:2015-06-01 修回日期:2015-11-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 饶红红 E-mail:rhh@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21265009,21265018)资助

Electrochemical Sensors Based on Electrochemically Reduced Graphene Oxide

Rao Honghong1*, Xue Zhonghua2, Wang Xuemei2, Zhao Guohu1, Hou Huihui2, Wang Hui2   

  1. 1. School of Chemistry and Environmental Science, Lanzhou City University, Lanzhou 730070, China;
    2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2015-06-01 Revised:2015-11-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21265009, 21265018).
石墨烯作为理想的电极材料,由于其优异的物理和化学性质,在电催化和电分析领域已得到了广泛的关注。由于石墨烯的不可逆团聚现象使其在电化学各领域的应用受到了极大的限制,而氧化石墨烯制备简单、易得,且具有良好的亲水特性,可弥补上述不足,但其结构中富含的各种含氧基团又会导致氧化石墨烯修饰界面的电子传输能力降低,不利于电催化反应和高灵敏传感器的构筑。采用适当的还原方法可减少和控制氧化石墨烯表面的含氧基团的数量,以恢复石墨烯较为完善的平面共轭结构,提高其导电性和调节带隙,达到调控材料电催化性能的目的。基于电化学还原氧化石墨烯(ERGO)得到的本征及各类无机、有机等ERGO类复合材料的电化学传感器具有明显的优势,已被广泛应用于各种电催化及电化学传感领域。本文就基于ERGO类材料的电化学传感器的近期进展作了简要评述,论述了此类电化学传感平台的特点、制备原理和方法、分类以及在各类环境污染物、食品和药物、DNA及生物等领域的电化学传感应用,并就此类电化学传感器的发展方向和应用前景进行了展望。
As an ideal electrode material with excellent physical and chemical properties, graphene has been widely concerned in electrocatalysis and electroanalytical applications. It may be limited by the great in the electrochemical application areas due to its irreversible agglomeration. However, it is well realized that graphene oxide can provide a new way to separate graphene sheets for the reason of its good hydrophilic characteristic and also that the preparation of graphene oxide usually is simple and easy. But the electron transmission capacity of the modified interface based on graphene oxide would be further decreased due to its oxygen-containing groups, which are not benefited for the eletrocatalysis and electrochemical sensors with high sensitivity. Additionally, oxygen-containing groups of graphene oxide can be reduced by using some reduction methods so as to restore a more perfect graphene structure with planar conjugated, which will further improve the conductivity and adjust the band gap of graphene oxide. Therefore the electro-catalytic properties of the resulting materials can be adapted by using such reduction methods. Electrochemical sensors based on electrochemical reduced graphene oxide (ERGO) have been widely applied in all kinds of electrcatalytic and electrochemical sensor research fields due to its unique characteristic and advantages. In this paper, the recent progress of electrochemical sensor based on ERGO materials are briefly reviewed, including the characteristics, preparation principle and methods, classification of such electrochemical sensing platform and, also its applications as electrochemical sensing in the field of environmental pollutants, the food and drug, DNA and biological analysis. In addition, the future development and application prospect of this kind of ERGO based electrochemical sensors were further discussed.

Contents
1 Introduction
2 Preparation of ERGO modified electrodes
2.1 Indirect electrochemically reduced method
2.2 Direct electrochemically reduced method
3 Classification of ERGO modified electrodes
3.1 Intrinsical ERGO modified electrodes
3.2 The composite modified electrodes based on inorganic nanoparticles and ERGO
3.3 The composite modified electrodes based on organic compounds and ERGO
3.4 The composite modified electrodes based on inorganic-organic and ERGO
4 Electrocatalytic and electrochemical applications of ERGO modified electrodes
4.1 Electrochemical analysis of small molecules
4.2 Electrochemical analysis of molecules containing aromatic structure
4.3 Electrochemical analysis of biological molecules (protein and DNA)
5 Conclusion and outlook

中图分类号: 

()
[1] Walcarius A. Electroanal., 2008, 20(7):711.
[2] 尉艳(Wei Y), 刘中刚(Liu Z G), 高超(Gao C), 王伦(Wang L), 刘锦淮(Liu J H), 黄行九(Huang X J). 化学进展(Progress in Chemistry), 2012, 24(4):616.
[3] Švancara I, Vyt?as K, Kalcher K, Walcarius A, Wang J. Electroanal., 2009, 21(1):7.
[4] Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3):183.
[5] Gan T, Hu S S. Microchim. Acta, 2011, 175(1/2):1.
[6] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103(37):7743.
[7] Gao H C, Duan H W. Biosens. Bioelectron., 2015, 65:404.
[8] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[9] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Nat. Nanotech., 2008, 3(4):206.
[10] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Science Bulletin), 2009, 18:2657.
[11] 王珂(Wang K). 湖南大学硕士论文(Master Dissertation of Hunan University), 2012.
[12] Guo S J, Sun S H. J. Am. Chem. Soc., 2012, 134:2492.
[13] 吴婕(Wu J). 化工进展(Chemical Industry & Engineering Progress), 2013, 06:1352.
[14] 杨旭宇(Yang X Y), 王贤保(Wang X B),李静(Li J), 杨佳(Yang J), 万丽(Wan L), 王敬超(Wang J C). 高等学校化学学报(Chemical Journal of Chinese University), 2012, 09:1902.
[15] Yang Y J, Li W K. Biosens. Bioelectron., 2014, 56:300.
[16] Li C, Yang Y, Zhang B, Chen G, Wang Z, Li G. Part. Part. Syst. Char., 2014, 31(2):201.
[17] Yola M L, Atar N, Ustundag Z, Solak A O. J. Electroanal. Chem., 2013, 698:9.
[18] Liu M L, Wang L P, Meng Y, Chen Q, Li H T, Zhang Y Y, Yao S Z. Electrochim. Acta, 2014, 116:504.
[19] Liu Z N, Ma X M, Zhang H C, Lu W J, Ma H Y, Hou S F. Electroanal., 2012, 24(5):1178.
[20] Veerapandian M, Seo Y T, Yun K, Lee M H. Biosens. Bioelectron., 2014, 58:200.
[21] Wan Y J, Tang L C, Gong L X, Yan D, Li Y B, Wu L B, Jiang J X, Lai G Q. Carbon, 2014, 69:467.
[22] Jiang J J, Du X Z. Nanoscale, 2014, 6(19):11303.
[23] Liu X, Xie L L, Li H L. J. Electroanal. Chem., 2012, 682:158.
[24] Wang C, Zou X C, Wang Q, Shi K Y, Tan J, Zhao X, Chai Y Q, Yuan R. Anal. Methods, 2014, 6(3):758.
[25] Wang C Q, Du J, Wang H W, Zou C E, Jiang F X, Yang P, Du Y K. Sensor. Actuat. B:Chem., 2014, 204:302.
[26] Li S S, Hu Y Y, Wang A J, Weng X, Chen J R, Feng J J. Sensor. Actuat. B:Chem., 2015, 208:468.
[27] Sun W N, Lu X F, Tong Y, Zhang Z, Lei J Y, Nie G D, Wang C. Int. J. Hydrogen. Energ., 2014, 39(17):9080.
[28] Chae I S, Lee J H, Hong J, Kang Y S, Kang S W. Chem. Eng. J., 2014, 251:343.
[29] Khan A, Khan A A P, Asiri A M, Rub M A, Rahman M M, Ghani S A. Microchim. Acta, 2014, 181(9-10):1049.
[30] Zhang K L. Appl. Surf. Sci., 2012, 258(19):7327.
[31] Arza C R, Ishida H, Maurer F H J. Macromolecules, 2014, 47(11):3685.
[32] Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C. J. Appl. Phys., 2014, 116(5):10.
[33] Hsu Y C, Chen G L, Lee R H. J. Polymer Res., 2014, 21(5):9.
[34] Manivel P, Dhakshnamoorthy M, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C. Rsc Advances, 2013, 3(34):14428.
[35] Qian Y, Lan Y F, Xu J P, Ye F C, Dai S Z. Appl. Surf. Sci., 2014, 314:991.
[36] Yang J T, Wu M J, Chen F, Fei Z D, Zhong M Q. J. Supercrit. Fluid., 2011, 56(2):201.
[37] Zuo P P, Feng H F, Xu Z Z, Zhang L F, Zhang Y L, Xia W, Zhang W Q. Chem. Cent. J., 2013, 7:11.
[38] Dai G P, Lu P, Liang Y, Lei Y T. J. Chin. Chem. Soc., 2013, 60(4):366.
[39] Dong Y L, Zhang H G, Rahman Z U, Su L, Chen X J, Hu J, Chen X G. Nanoscale, 2012, 4(13):3969.
[40] Jiang T S, Liu W P, Mao Y L, Zhang L, Cheng J L, Gong M, Zhao H B, Dai L M, Zhang S, Zhao Q. Chem. Eng. J., 2015, 259:603.
[41] Chunder A, Pal T, Khondaker S I, Zhai L. J. Phys. Chem. C, 2010, 114(35):15129.
[42] Jahan M, Liu Z L, Loh K P. Adv. Funct. Mater., 2013, 23(43):5363.
[43] Wang X, Wang Q X, Wang Q H, Gao F, Gao F, Yang Y Z, Guo H X. Acs Appl. Mater. Interfaces, 2014, 6(14):11573.
[44] Loh K P, Bao Q, Eda G, Chhowalla M. Nat. Chem., 2010, 2(12):1015.
[45] Boukhvalov D W, Katsnelson M I. J. Am. Chem. Soc., 2008, 130:10697.
[46] Jeong H K, Jin M H, So K P, Lim S C, Lee Y H. J. Phys. D:Appl. Phys, 2009, 42(6):065418-1.
[47] 曾兆华(Zeng Z H),杨建文(Yang J W),材料化学第2版(Materials Chemistry, 2nd ed). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 232.
[48] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, R. D.Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, Jr., R. S.Ruoff, Carbon, 2009, 47:68.
[49] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S.Ruoff, J. Mater. Chem., 2006, 16, 155.
[50] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F A, Dong S J. Chem. Eur. J., 2009, 15(25):6116.
[51] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7):1558.
[52] 黄海平(Huang H P), 朱俊杰(Zhu J J). 分析化学(Chinese Journal of Analytical Chemistry), 2011, 7:963.
[53] Voylov D N, Agapov A L, Sokolov A P, Shulga Y M, Arbuzov A A. Carbon, 2014, 69:563.
[54] Li S J, Qian C, Wang K, Hua B Y, Wang F B, Sheng Z H, Xia X H. Sensor. Actuat. B:Chem, 2012, 174:441.
[55] 肖鹏(Xiao P), 王大辉(Wang D H), 郎俊伟(Lang J W). 电化学(Journal of Electrochemistry), 2014, 6:553.
[56] Akhavan O, Ghaderi E. J. Phys. Chem. C, 2009, 113(47):20214.
[57] Choobtashani M, Akhavan O. Appl. Surf. Sci., 2013, 276:628.
[58] Mani V, Periasamy A P, Chen S M. Electrochem. Commun., 2012, 17:75.
[59] Yang S, Li G, Wang G, Zhao J, Qiao Z, Qu L. Sensor. Actuat. B:Chem., 2015, 206:126.
[60] Wang Z,Wu S, Zhang J, Chen P, Yang G, Zhou X, Zhang Q, Yan Q, Zhang H. Nanoscale Res. Lett., 2012, 7(1):1.
[61] Yang B B, Wang H W, Du J, Fu Y Z, Yang P, Du Y K. Colloids Surf. A, 2014, 456:146.
[62] Teradal N L, Narayan P S, Jaladappagari S. Anal. Methods, 2013, 5(24):7090.
[63] Yang L, Liu D, Huang J S, You T Y. Sensor. Actuat. B:Chem, 2014, 193:166.
[64] Xie G X, Forslund M, Pan J S. ACS Appl. Mater. Interfaces, 2014, 6(10):7444.
[65] Goh M S, Bonanni A, Ambrosi A, Sofer Z, Pumera M. Analyst, 2011, 136:4738.
[66] Haque A M J, Park H, Sung D, Jon S, Choi S Y, Kim K. Anal. Chem., 2012, 84:1871.
[67] Guo H L,Wang X F, Qian Q Y, Wang F B, Xia X H. ACS Nano, 2009, 3(9):2653.
[68] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanal., 2010, 22(10):1027.
[69] Peng X Y, Liu X X, Diamond D, Lau K T. Carbon, 2011, 49(11):3488.
[70] 吴玲(Wu L), 曹忠(Cao Z), 宋天铭(Song T M), 宋铖(Song C), 谢晶磊(Xie J L), 何婧琳(He J L), 肖忠良(Xiao Z L). 分析化学(Chinese Journal of Analytical Chemistry), 2014, 11:1656.
[71] Ping J F, Wang Y X, Ying Y B, Wu J. Anal. Chem., 2012, 84:3473.
[72] Du M, Yang T, Li X, Jiao K. Talanta, 2012, 88:439.
[73] Ye X S, Liang B, Fang L, Yang G, Hu Y C, Guo X S. Biosens. Bioelectron., 2013, 43:131.
[74] Wang H W, Ren F F, Wang C Q, Yang B B, Bin D, Zhang K, Du Y K. Rsc Advances, 2014, 4(51):26895.
[75] Li S J, Deng D H, Pang H, Liu L, Xing Y, Liu S R. J. Solid State Electrochem., 2012, 16(9):2883.
[76] Zhang Z P, Yan J, Jin H Z, Yin J G. Electrochim. Acta, 2014, 139:232.
[77] Chng E L K, Pumera M. Chem. Asian J., 2011, 6:2899.
[78] Dharuman V, Hahn J H, Jayakumar K, Teng W. Electrochim. Acta, 2013, 114:590.
[79] Zhang Z, Yin J. Electrochim. Acta, 2014, 119:32.
[80] Dogan H O, Ekinci D, Demir U. Surf. Sci., 2013, 611:54.
[81] Aneesh P K, Nambiar S R, Rao T P, Ajayaghosh A. Anal. Methods, 2014, 6(14):5322.
[82] Devadas B, Rajkumar M, Chen S M, Saraswathi R. Int. J. Electrochem. Sci., 2012(7):3339.
[83] Deng P H, Xu Z F, Kuang Y F. J. Electroanal. Chem., 2013, 707:7.
[84] Casero E, Alonso C, Vazquez L, Petit-Dominguez M D, Parra-Alfambra A M, De La Fuente M, Merino P, Alvarez-Garcia S, De Andres A, Pariente F, Lorenzo E. Electroanal., 2013, 25(1):154.
[85] Zhao B, Liu Z R, Fu W Y, Yang H B. Electrochem. Commun., 2013, 27:1.
[86] Wang Z, Zhou X, Zhang J, Boey F, Zhang H J. Phys. Chem. C, 2009, 113(32):14071.
[87] Zhang Y, Xiao X, Sun Y, Shi Y, Dai H, Ni P, Hu J, Li Z, Song Y, Wang L. Electroanal., 2013, 25(4):959.
[88] Deng S Y, Lei J P, Cheng L X, Zhang Y Y, Ju H X. Biosens. Bioelectron., 2011, 26(11):4552.
[89] Raj M A, John S A. J. Phys. Chem. C, 2013, 117(8):4326.
[90] Hossain M F, Park J Y. Rsc Advances, 2013, 3(36):16109.
[91] Zhang Y, Xiao X P, Sun Y J, Shi Y, Dai H C, Ni P J, Hu J T, Li Z, Song Y H, Wang Li. Electroanalysis, 2013, 25:1.
[92] Sun W, Gong S X, Deng Y, Li T T, Cheng Y, Wang W C, Wang L. Thin Solid Films, 2014, 562:653.
[93] Wang W T, Xu G Y, Cui X T, Sheng G, Luo X L. Biosens. Bioelectron., 2014, 58:153.
[94] Shamsipur M, Tabrizi M A, Mahkam M, Aboudi J. Electroanal., 2015, 27(6):1466.
[95] Liu Q, Li Y, Zhang L, Li D, Fan C, Long Y T. Electroanal., 2010, 22(23):2862.
[96] Wu S, Huang F F, Lan X Q, Wang X Y, Wang J M, Meng C G. Sensor. Actuat. B:Chem., 2013, 177:724.
[97] You J M, Kim D, Kim S K, Kim M S, Han H S, Jeon S. Sensor Actuat. B:Chem., 2013, 178:450.
[98] Huang D K, Lu J F, Li S H, Luo Y P, Zhao C, Hu B, Wang M K, Shen Y. Langmuir, 2014, 30:6990.
[99] Li M, Bo X J, Mu Z C, Zhang Y F, Guo L P. Sensor Actuat. B:Chem., 2014, 192:261.
[100] Liu C, Wang K, Luo S, Tang Y, Chen L. Small, 2011, 7(9):1203.
[101] Olejnik P, Swietlikowska A, Gniadek M, Palys B. J. Phys. Chem. C, 2014, 118(51):29731.
[102] Si Y, Samulski E T. Nano Lett., 2008, 8(6):1679.
[103] Chen L, Tang Y, Wang K, Liu C, Luo S. Electrochem. Commun., 2011, 13(2):133.
[104] Xue Z H, Hou H H, Rao H H, Hu C X, Zhou X B, Liu X H, Lu X Q. RSC Advances, 2015, 5(46):36707.
[105] Adhikari B R, Govindhan M, Chen A. Electrochim. Acta, 2015, 162:198.
[106] Hu X, Dou W, Fu L, Zhao G. Anal. Biochem., 2013, 434(2):218.
[107] Wang D, Yan W, Vijapur S H, Botte G G. Electrochim. Acta, 2013, 89:732.
[108] Zhang H T, Zhang X, Zhang D C, Sun X Z, Lin H, Wang C H, Ma Y W. J. Phys. Chem. B, 2013, 117:1616.
[109] Guo S X, Liu Y P, Bond A M, Zhang J, Karthik P E, Maheshwaran I, Kumarb S S, Phani K L N. Phys. Chem. Chem. Phys., 2014, 16:19035.
[110] Dong X Y, Qiu B J, Yang X W, Jiang D, Wang K. Electrochem., 2014, 82(12):1061.
[111] Felix F S, Ferreira L M C, Vieira F, Trindade G M, Ferreira V, Angnes L. New J. Chem., 2015, 39(1):696.
[112] Liu G, Wang Y M, Sun D M. J. Mater. Sci. Mater. E, 2015, 26(2):943.
[113] Li J H, Wang Y, Li Y M, Tang L H, Lu J. Electrochem. Commun., 2009, 11:889.
[114] Zhang L, Zhang X H, Li X L, Peng Y, Shen H J, Zhang Y D. Anal. Lett., 2013, 46(6):923.
[115] 于小雯(Yu X W), 盛凯旋(Sheng K X), 陈骥(Chen J), 李春(Li C), 石高全(Shi G Q). 化学学报(Acta Chim. Sinica), 2014, 72:319.
[116] Artiles M S, Rout C S, Fisher T S. Adv. Drug Delivery Rev, 2011, 63:1352.
[117] Molina J, Fernandez J, Del Rio A I, Bonastre J, Cases F. Mater. Charact., 2014, 89:56.
[118] You J M, Han H S, Jeon S. J. Nanosci. Nanotechnol., 2015, 15(8):5691.
[119] Gholivand M B, Jalalvand A R, Goicoechea H C. Mater. Sci. Eng. C-Mater. Bio. Appl., 2014, 40:109.
[120] Li Z J, Sun X L, Xia Q F, Li R Y, Fang Y J, Yang S P, Liu J K. Electrochim. Acta, 2012, 85:42.
[121] Eng A Y S, Pumera M. Electrochem. Commun., 2014, 43:87.
[122] Zhu Q, Chai Y Q, Zhuo Y, Yuan R. Biosens. Bioelectron., 2015, 68:42.
[123] Liu Y, Huang Z, Xie Q J, Sun L E, Gu T A, Li Z, Bu L J, Yao S Z, Tu X M, Luo X B, Luo S L. Sensor. Actuat. B:Chem., 2013, 188:894.
[124] Ding L, Liu Y P, Zhai J P, Bond A M, Zhang J. Electroanal., 2014, 26(1):121.
[125] Nagaraju D H, Suresh G S. ECS Electrochem. Lett., 2012, 1(3):F21.
[126] Zhang X F, Zhang B Y, Huang D K, Yuan H L, Wang M K, Shen Y. Carbon, 2014, 80:591.
[127] Yang J C, Zhang W. J. Solid State Electrochem., 2014, 18(10):2863.
[128] Yang T, Chen M J, Kong Q Q, Wang X X, Guo X H, Li W H, Jiao K. Electrochimica Acta, DOI:10.1016/j.electacta.2015.09.158
[129] Li C, Shi G. Electrochim. Acta, 2011, 56:10737.
[130] Bai H, Li C, Shi G. Adv. Mater., 2011, 23:1089.
[131] Huang D K, Zhang B Y, Zhang Y B, Zhan F, Xu X B, Shen Y, Wang M K. J. Mater. Chem. A, 2013, 1(4):1415.
[132] Mazloum-Ardakani M, Sheikh-Mohseni M A, Benvidi A. Electroanal., 2011, 23(12):2822.
[133] Liu X X, Zhu H, Yang X R. Rsc Advances, 2014, 4(8):3706.
[134] Zhu W C, Huang H, Gao X C, Ma H Y. Mater. Sci. Eng. C-Mater. Bio. Appl., 2014, 45:21.
[135] Alwarappan S, Erdem A, Liu C, Li C Z. J. Phys. Chem. C, 2009, 113:8853.
[136] Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81:5603.
[137] Zhou X B, Yuan C X, Qin D D, Xue Z H, Wang Y L, Du J, Ma L L, Ma L, Lu X Q. Electrochim. Acta, 2014, 119:243.
[138] Nia P M, Meng W P, Lorestani F, Mahmoudian M R, Alias Y. Sensor. Actuat. B:Chem., 2015, 209:100.
[139] Li Y, Huangfu C, Du H, Liu W, Li Y, Ye J. J. Electroanal. Chem., 2013, 709:65.
[140] Ping J F, Wang Y X, Wu J, Ying Y B. Food Chem., 2014, 151:65.
[141] Pokpas K, Zbeda S, Jahed N, Mohamed N, Baker P G, Iwuoha E I. Inter. J. Electrochem. Sci., 2014, 9(2):736.
[142] Bikkarolla S K, Cumpson P, Joseph P, Papakonstantinou P. Faraday. Discuss., 2014, 173:415.
[143] Safavi A, Kazemi H, Kazemi S H. J. Power Sources, 2014, 256:354.
[144] Zhou Y G, Chen J J, Wang F B, Sheng Z H, Xia X H. Chem. Commun., 2010, 46(32):5951.
[145] Liu J P, Zhou H H, Huang J T, Huang Z Y, Zeng F Y, Kuang Y F. Int. J. Hydrogen. Energ., 2012, 37(22):16764.
[146] Liu L J, Gou Y Q, Gao X, Zhang P, Chen W X, Feng S L, Hu F D, Li Y D. Mater. Sci. Eng. C-Mater. Bio. Appl., 2014, 42:227.
[147] Unnikrishnan B, Mani V, Chen S M. Sensor. Actuat. B:Chem., 2012, 173:274.
[148] Cheemalapati S, Palanisamy S, Chen S M. Inter. J. Electrochem. Sci., 2013, 8(3):3953.
[149] Lu J S, Cui D M, Li H N, Zhang Y J, Liu S Q. Electrochim. Acta, 2015, 165:36.
[150] Filik H, Cetintas G, Avan A A, Aydar S, Koc S N, Boz I. Talanta, 2013, 116:245.
[151] Kong Y, Ren X L, Huo Z L, Wang G X, Tao Y X, Yao C. Eur. Food Res. Technol., 2013, 236(6):955.
[152] Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4:3129.
[153] Narayana P S, Teradal N L, Seetharamappa J, Satpati A K. Anal. Methods, 2015, 7(9):3912.
[154] Filip J, Tkac J. Electrochem. Commun., 2014, 49:70.
[155] Liu G, Ma W, Luo Y, Sun D M, Shao S. J. Anal. Methods Chem., 2014, 984314.
[156] Raj M A, John S A. Anal. Chim. Acta, 2013, 771:14.
[157] Yang T, Guan Q, Ma S Y, Li Q H, Jiao K. Chin. J. Chem., 2012, 30(9):1966.
[158] Dai H, Zhang S P, Lin Y Y, Ma Y, Gong L S, Xu G F, Fu M, Li X H, Chen G N. Anal. Methods, 2014, 6(13):4746.
[159] Jeyapragasam T, Saraswathi R, Chen S M, Lou B S. Inter. J. Electrochem. Sci., 2013, 8(11):12353.
[160] Filik H, Cetintas G, Avan A A, Koc S N, Boz I. Inter. J. Electrochem. Sci., 2013, 8(4):5724.
[161] Wang D, Dou W C, Chen Y, Zhao G Y. Rsc Advances, 2014, 4(101):57733.
[162] Mani V, Devadas B, Chen S M. Biosens. Bioelectron., 2013, 41:309.
[163] Du D X, Guo S, Tang L, Ning Y, Yao Q F, Zhang G J. Sensor. Actuat. B, 2013, (186):563.
[1] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[2] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[3] 万武波, 纪冉, 何锋*. 石墨烯基分离膜研究进展[J]. 化学进展, 2017, 29(8): 833-845.
[4] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[5] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[6] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[7] 高玉荣, 黄培, 孙佩佩, 吴敏, 黄勇. 石墨烯/纤维素复合材料的制备及应用[J]. 化学进展, 2016, 28(5): 647-656.
[8] 邢立文, 马占芳. 基于碳纳米材料的无酶电化学传感器同时检测抗坏血酸、多巴胺和尿酸[J]. 化学进展, 2016, 28(11): 1705-1711.
[9] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[10] 王茜, 郭晓燕, 邵怀启, 周启星, 胡万里, 宋晓静. 石墨烯及氧化石墨烯对分离膜改性的方法、效能和作用机理[J]. 化学进展, 2015, 27(10): 1470-1480.
[11] 孙兵, 艾仕云. 光电化学传感器的构建及应用[J]. 化学进展, 2014, 26(05): 834-845.
[12] 周丽, 邓慧萍*, 万俊力, 张瑞金. 石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能[J]. 化学进展, 2013, 25(01): 145-155.
[13] 张昊*, 崔华. 氧化石墨烯荧光传感器[J]. 化学进展, 2012, 24(08): 1554-1559.
[14] 尉艳, 刘中刚, 高超, 王伦, 刘锦淮, 黄行九. 纳米材料电化学与生物传感器--有机微污染物检测新途径[J]. 化学进展, 2012, 24(04): 616-627.
[15] 徐秀娟 秦金贵 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12): 2559-2567.
阅读次数
全文


摘要