English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 75-82 DOI: 10.7536/PC150615 前一篇   后一篇

• 综述与评论 •

碳酸钙模板法制备高分子微球

王荣民*, 吕思瑶, 李涛, 何玉凤, 宋鹏飞   

  1. 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 兰州 730070
  • 收稿日期:2015-06-01 修回日期:2015-07-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 王荣民 E-mail:wangrm@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21263024,21364012)资助

Fabricating Polymer Microspheres through CaCO3 Templates

Wang Rongmin*, Lv Siyao, Li Tao, He Yufeng, Song Pengfei   

  1. Key Laboratory Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2015-06-01 Revised:2015-07-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21263024, 21364012).
模板法是一种制备粒径可控、形貌均一微球的有效途径。以球霰石形态存在的CaCO3多孔微球具有生物相容、孔径均一,以及可在温和条件下分解等优点,适用于作为模板制备微球。本文在对CaCO3模板进行简单介绍的基础上,从原料选取与应用角度综述了用CaCO3模板法制备微球的研究进展。常用的装载CaCO3多孔微球的方法有物理吸附、共沉淀和渗透法等,所用原料有天然高分子(如多糖、蛋白质、DNA)和合成高分子(如聚苯乙烯磺酸钠、聚乙烯醇)。利用CaCO3模版制备的微球具有多孔洞或空心结构,尺寸形貌均一可控,特别适用于制药、药物递送、生物传感器及化学分析等领域。预计随着纳米技术的发展和生物医药领域的需求将推动CaCO3模板法的研究,以期通过该方法制备出应用领域更加广泛的微球。
Templating technique is an effective and efficient method to fabricate polymer microspheres with controllable size and same morphology. As one of polymorphs of CaCO3, vaterite is the ideal template particle for fabricating microspheres because of many advantages such as their biocompatibility, monodispersed pore size and mild decomposition conditions. In this review, based on introducing the CaCO3 templates briefly, a recent progress in utilizing the CaCO3 templates for fabricating microspheres is also addressed according to the selection of raw materials and the applications. Three main routes to load the CaCO3 cores have been used, such as physisorption, infiltration and co-precipitation. The raw materials can be divided into natural polymer (such as polysaccharide, protein and DNA) and synthetic polymer (such as polystyrene sulfonate, polyvinyl alcohol). The structures of microspheres fabricated by CaCO3 templates are porous and hollow, and size controlling with uniform morphology. All the particles can be used in various areas included pharmaceutical, drug delivery, biosensors and chemical analysis. In the future, the researches of CaCO3 templating technique will be greatly promoted by the development of nanotechnology and the requirement of biomedical field to prepare the new kinds of microspheres with extensive applications.

Contents
1 Introduction
2 The introduction of CaCO3 templates
3 Natural polymer microspheres
3.1 Chitosan microcapsules and alginate microcapsules
3.2 Protein and polyaminoacid porous microspheres
3.3 DNA microcapsules
4 Synthetic polymer microspheres
4.1 The polymer microspheres containing polystyrene
4.2 Polyethylene glycol porous microspheres
5 Conclusion

中图分类号: 

()
[1] Xiong Y, Liu J, Wang Y, Wang H, Wang R M. Angew. Chem. Int. Ed., 2012, 51: 9114.
[2] Li C, Wu Z, He Y, Song P, Zhai W, Wang R M. J. Colloid Interf. Sci., 2014, 426: 39.
[3] De La Vega J C, Elischer P, Schneider T, Häfeli U O. Nanomedicine, 2013, 8(2): 265.
[4] Tan C J, Chua H G, Ker K H, Tong Y W. Anal. Chem., 2008, 80(3): 683.
[5] 毕殿洲(Bi D Z). 药剂学(Pharmacy). 北京:人民卫生出版社(Beijing: People's Medical Publishing House), 2002.461.
[6] 裴菲(Pei F). 西北师范大学硕士论文(Master Dissertation of Northwest Normal University), 2013.
[7] Schmidt S, Behra M, Uhlig K, Madaboosi N, Hartmann L, Duschl C, Volodkin D. Adv. Funct. Mater., 2013, 23(1): 116.
[8] Schmidt S, Volodkin D. J. Mater. Chem. B, 2013, 1(9): 1210.
[9] Zhao Y, Luo Z, Li M, Qu Q, Ma X, Yu S H, Zhao Y. Angew. Chem. Int. Ed., 2015, 54(3): 919.
[10] Zhao Y, Lu Y, Hu Y, Li J P, Dong L, Lin L N, Yu S H. Small, 2010, 6(21): 2436.
[11] Biradar S, Ravichandran P, Gopikrishnan R, Goornavar V, Hall J C, Ramesh V, Baluchamy S, Jeffers R B, Ramesh G T. J. Nanosci. Nanotechno., 2011, 11(8): 6868.
[12] Trushina D B, Bukreeva T V, Kovalchuk M V, Antipina M N. Mater. Sci. Eng. C, 2014, 45: 644.
[13] He Q, Cui Y, Li J. Chem. Soc. Rev., 2009, 38(8): 2292.
[14] He Q, Cui Y, Ai S, Tian Y, Li J B. Curr. Opin. Colloid In., 2009, 14(2): 115.
[15] Wu Y, Cheng C, Yao J, Chen X, Shao Z. Langmuir, 2011, 27(6): 2804.
[16] Trushina D B, Bukreeva T V, Kovalchuk M V, Antipina M N. Mat. Sci. Eng. C, 2014, 45: 644.
[17] Bre D?evi D? L, Kralj D. Croat. Chem. Acta, 2007, 80(3/4): 467.
[18] Volodkin D V, Larionova N I, Sukhorukov G B. Biomacromolecules, 2004, 5(5): 1962.
[19] Vogel R, Persson M, Feng C, Parkin SJ, Nieminen TA, Wood B, Heckenberg N R, Rubinsztein-Dunlop H. Langmuir, 2009, 25(19): 11672.
[20] Yashchenok A M, Delcea M, Videnova K, Jares-Erijman E A, Jovin T M, Konrad M, Möhwald H, Skirtach A G. Angew. Chem. Int. Ed., 2010, 49(44): 8116.
[21] Volodkin D V, Petrov A I, Prevot M, Sukhorukov G B. Langmuir, 2004, 20(8): 3398.
[22] Trushina D B, Bukreeva T V, Kovalchuk M V, Antipina M N. Mat. Sci. Eng. C, 2014, 45: 644.
[23] Volodkin D V, Petrov A I, Prevot M, Sukhorukov G B. Langmuir, 2004, 20(8): 3398.
[24] Sukhorukov G B, Volodkin D V, Günther A M, Sukhorukov G B. J. Mater. Chem., 2004, 14(14): 2073.
[25] De Temmerman M L, Demeester J, De Vos F, De Smedt S C. Biomacromolecules, 2011, 12(4): 1283.
[26] Volodkin D. Adv. Colloid Interfac., 2014, 4(206): 437.
[27] Yin X, Li F, He Y, Wang Y, Wang R M. Biomaterials Science, 2013, 1(5): 528.
[28] Leader B, Baca Q J, Golan D E. Nat. Rev. Drug Discov., 2008, 7(1): 21.
[29] Han Y, Tong W, Zhang Y, Gao C. Macromol. Rapid Comm., 2012, 33(4): 326.
[30] Liu L, Wu F, Ju X J, Xie R, Wang W, Niu C H, Chu L Y. J. Colloid Interf. Sci., 2013, 404: 85.
[31] Roberts J R, Ritter D W, McShane M J. J. Mater. Chem. B, 2013, 1(25): 3195.
[32] Zhu M L, Li Y L, Zhang Z M, Jiang Y. RSC Adv., 2015, 5(42): 33262.
[33] Schmidt S, Behra M, Uhlig K, Madaboosi N, Hartmann L, Duschl C, Volodkin D. Adv. Funct. Mater., 2013, 23(1): 116.
[34] Best J P, Yan Y, Caruso F. Adv. Healthc. Mater., 2012, 1(1): 1.
[35] Merkel T J, Jones S W, Herlihy K P, Kersey F R, Shields A R, Napier M, Lufta J C, Wu H, Zamboni W C, Wang A Z, Bear J E, DeSimone J M. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(2): 586.
[36] Mak W C, Georgieva R, Renneberg R, Baumler H. Adv. Funct. Mater., 2010, 20(23): 4139.
[37] Wang A, Cui Y, Li J, van Hest J C M. Adv. Funct. Mater., 2012, 22(13): 2673.
[38] Khafagy E S, Morishita M, Onuki Y, Takayama K. Adv. Drug Deliver Rev., 2007, 59(15): 1521.
[39] Klingler C, Müller B W, Steckel H. Int. J. Pharmaceut., 2009, 377(1): 173.
[40] Shi L, Plumley C J, Berkland C. Langmuir, 2007, 23(22): 10897.
[41] Volodkin D V, von Klitzing R, Möhwald H. Angew. Chem. Int. Ed., 2010, 122(48): 9444.
[42] Volodkin D V, Schmidt S, Fernandes P, Larionova NI, Sukhorukov GB, Duschl C, Möhwald H, von Klitzing R. Adv. Funct. Mater., 2012, 22(9): 1914.
[43] Roessl U, Nahálka J, Nidetzky B. Biotechnol. Lett., 2010, 32(3): 341.
[44] Yan X, Li J, Möhwald H. Adv. Mater., 2012, 24(20): 2663.
[45] Möhwald H. Colloid Polym. Sci., 2010, 288(2): 123.
[46] Borodina T, Markvicheva E, Kunizhev S, Möhwald H, Sukhorukov G B, Kreft O. Macromol. Rapid Comm., 2007, 28(18/19): 1894.
[47] Kong J, Lu Z, Lvov Y M, Desamero R Z B, Frank H A, Rusling J F. J. Am. Chem. Soc., 1998, 120(29): 7371.
[48] Fujii A, Maruyama T, Ohmukai Y, Kamio E, Sotani T, Matsuyama H. Colloids Surf. A Physicochem. Eng. Asp., 2010, 356(1): 126.
[49] Wang Z, Qian L, Wang X, Zhu H, Yang F, Yang F. Colloids Surf. A: Physicochem. Eng. Asp., 2009, 332(2): 164.
[50] Zhao Q, Li B. Nanomed.: Nanotechnol., 2008, 4(4): 302.
[51] Luo G F, Xu X D, Zhang J, Yang J, Gong Y H, Lei Q, Jia H Z, Li C, Zhuo R X, Zhang X Z. ACS Appl. Mater. Inter., 2012, 4(10): 5317.
[52] Angelatos A S, Radt B, Caruso F. J. Phys. Chem. B, 2005, 109(7): 3071.
[53] Wu Q, Chen Z C, Lu D S, Lin X F. Macromol. Biosci., 2006, 6(1): 78.
[54] Volodkin D V, Petrov A I, Prevot M, Sukhorukov G B. Langmuir, 2004, 20(8): 3398.
[55] Petrov A I, Volodkin D V, Sukhorukov G B. Biotechnol. Progr., 2005, 21(3): 918.
[56] Xu L. Polym. Bull., 2013, 70(2): 455.
[57] 金谊(Jin Y), 朱以华(Zhu Y H), 刘望才(Liu W C), 王家荣(Wang J R), 房江华(Pang J H). 过程工程学报(The Chinese Journal of Process Engineering), 2009, 9(4): 776.
[58] Li F, Tang C, Liu S, Ma G. Electrochimica Acta, 2010, 55(3): 838.
[59] Anandhakumar S, Nagaraja V, Raichur A M. Colloid Surface B, 2010, 78(2): 266.
[60] Tong W, She S, Xie L, Gao C. Soft Matter, 2011, 7(18): 8258.
[61] Zhao Q H, Zhang S A, Tong W J, Gao C Y, Shen J C. Eur. Polym. J., 2006, 42(12): 3341.
[62] Shi J, Yang C, Zhang S, Wang X, Jiang Z, Zhang W, Song X, Ai Q, Tian C. ACS Appl. Mater. Inter., 2013, 5(20): 9991.
[63] Behra M, Schmidt S, Hartmann J, Volodkin D V, Hartmann L. Macromol. Rapid Comm., 2012, 33(12): 1049.
[64] Pussak D, Behra M, Schmidt S, Hartmann L. Soft Matter, 2012, 8(5): 1664.
[65] Behra M, Azzouz N, Schmidt S, Volodkin D V, Mosca S, Chanana M, Seeberger P H, Hartmann L. Biomacromolecules, 2013, 14(6): 1927.
[66] Cui J, van Koeverden M P, Müllner M, Kempe K, Caruso F. Adv. Colloid Interface, 2014, 207: 14.
[67] Parakhonskiy B V, Yashchenok A M, Konrad M, Skirtach A G. Adv. Colloid Interface, 2014, 207: 253.
[68] Gokmen M T, Du Prez F E. Prog. Polym. Sci., 2012, 37(3): 365.
[69] Kowalczuk A, Trzcinska R, Trzebicka B, Müller A H E, Dworak A, Tsvetanov C B. Prog. Polym. Sci., 2014, 39(1): 43.
[1] 那向明, 周炜清, 李娟, 苏志国, 马光辉. 高分子多孔微球产品的制备及其在类病毒颗粒分离纯化中的应用[J]. 化学进展, 2018, 30(1): 5-13.
[2] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[3] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[4] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[5] 赵爽, 赵燕燕, 孟恒星, 李茜, 尹玉姬. 间充质干细胞扩增载体材料[J]. 化学进展, 2012, 24(01): 173-181.
[6] 姜锦林, 宋睿, 任静华, 王晓蓉, 杨柳燕. 蓝藻水华衍生的微囊藻毒素污染及其对水生生物的生态毒理学研究[J]. 化学进展, 2011, 23(01): 246-253.
[7] 杨小超 莫志宏. 纳米粒子微囊的界面自组装*[J]. 化学进展, 2010, 22(09): 1735-1740.
[8] 史静,任楠,张亚红,唐颐. 微囊反应器研究进展* [J]. 化学进展, 2009, 21(09): 1750-1756.
[9] 韩利民,索全伶,洪海龙. 高分子微球在电化学领域的应用*[J]. 化学进展, 2008, 20(06): 931-935.
[10] 陈向荣,丁小斌,郑朝晖,彭宇行. 聚合物纳米容器的研究进展*[J]. 化学进展, 2004, 16(03): 370-.
阅读次数
全文


摘要

碳酸钙模板法制备高分子微球