English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1841-1850 DOI: 10.7536/PC150509 前一篇   

• 综述与评论 •

电纺含银纳米粒子复合纤维的制备及应用

郭世伟, 苑春刚*   

  1. 华北电力大学环境科学与工程学院 保定 071003
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-18
  • 通讯作者: 苑春刚 E-mail:chungangyuan@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.21277043)和北京市自然科学基金项目(No.8132038)资助

Preparation and Application of Silver Nano Composite Fibers by Electrostatic Spinning

Guo Shiwei, Yuan Chungang*   

  1. School of Environmental Science & Engineering, North China Electric Power University, Baoding 071003, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21277043) and the Beijing Natural Science Foundation (No. 8132038).
银纳米粒子由于其特殊的物理化学性质而被广泛应用,但其易团聚,影响实际使用效果。银纳米粒子可被负载到稳定载体上,获得具有优异性能的纳米复合材料,克服了团聚等缺限,大大改善应用效果和效率。采用静电纺丝技术制备银修饰纳米复合纤维材料是其中一种有效的方法,近年来在复合材料制备领域受到了广泛关注。本文综述了最近几年关于静电纺丝制备负载银纳米颗粒纤维复合材料及其应用的研究进展,重点介绍了静电纺丝制备负载银纳米纤维过程中纳米银的生成和负载方法,总结了有机主体和无机主体两种纺丝纤维的制备研究进展,详细介绍了负载银纺丝纤维在几个重要领域的应用及研究方向。
Silver nanoparticles have been widely applied in various areas due to their special physical and chemical properties. However, the practical applications are always restricted by aggregation between nanoparticles. The drawbacks can be minimized by dispersing nanoparticles onto a template to generate nanocomposites. The obtained nanocomposites have much better physical and chemical properties over the single component. Electrostatic spinning has already been used as an effective tool to synthesize the nanofiber composites loaded with silver nanoparticles. In this paper we review the studies about synthesis and application of silver nanocomposites by electrostatic spinning in recent years,highlighting the preparation and loading methods of Ag nanoparticles in the process of synthesizing silver composite fibers. The recent developments in the preparation of two kinds of silver composite fibers, organic and inorganic composite fibers, are summarized. In addition, the paper also point out the directions.

Contents
1 Introduction
2 Preparation of Ag-loaded composite fibers
2.1 Preparation of the AgNPs
2.2 Loading of the AgNPs
2.3 Organic Ag-loaded composite fiber
2.4 Inorganic Ag-loaded composite fiber
3 Applications of Ag-loaded composite fiber
3.1 Antibacterial
3.2 Filtrater
3.3 Surface-enhanced Raman scattering
3.4 Catalyst
3.5 Sensor
3.6 Battery material
3.7 Electromagnetic interference shielding
4 Perspectives

中图分类号: 

()
[1] Ramakrishna S, Fujihara K, Teo W E, Yong T, Ma Z, Ramaseshan R. Mater. Today, 2006, 9 (3): 40.
[2] Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46 (30): 5670.
[3] Rutledge G C, Fridrikh S V. Adv. Drug Delivery Rev., 2007, 59 (14): 1384.
[4] Manikam V R, Cheong K Y, Razak K A. Mater. Sci. Eng. B, 2011, 176 (3): 187.
[5] Abdelgawad A M, Hudson S M, Rojas O J. Carbohydr. Polym., 2014, 100: 166.
[6] Tijing L D, Ruelo M T G, Amarjargal A, Pant H R, Park C H, Kim C S. Mater. Chem. Phys., 2012, 134 (2/3): 557.
[7] Tian L, Wang P, Zhao Z, Ji J. Appl. Biochem. Biotech., 2013, 171 (7): 1890.
[8] Shi Q, Vitchuli N, Nowak J, Caldwell J M, Breidt F, Bourham M, Zhang X, Mccord M. Eur. Polym. J., 2011, 47 (7): 1402.
[9] Hafez E E, El-Aassar M R, Khalil K A, Al-Deyab S S, Taha T H. Afr. J. Biotechnol., 2011, 10 (84): 19658.
[10] Shen L, Yu L, Wang M, Wang X, Zhu M, Hsiao B S. J. Nanosci. Nanotechnol., 2015, 15 (7): 5004.
[11] Jia W, Su L, Ding Y, Schempf A, Wang Y, Lei Y. J. Phys. Chem. C, 2009, 113(37): 16402.
[12] Li X, Wang M, Wang C, Cheng C, Wang X. ACS Appl. Mater. Interfaces, 2014, 6 (17): 15272.
[13] Yu L,Zhao J,Shen L,Gao Y,Wang X. Advanced Composite Materials, 1-3nd ed, 2012. 2543.
[14] Yu L N, Wang M, Shen L D, Wang X F, Zhu M F. Acta Polym. Sin., 2014, (2): 239.
[15] Xiao S, Xu W, Ma H, Fang X. RSC Advances, 2012, 2 (1): 319.
[16] Wang W, Li W, Gao C, Tian W, Sun B, Yu D. Appl. Surf. Sci., 2015, 342: 120.
[17] Tetsumoto T, Gotoh Y. Sen-i Gakkaishi, 2010, 66 (9): 222.
[18] Song J, Birbach N L, Hinestroza J P. Cellulose, 2012, 19 (2): 411.
[19] Zhang L, Xiao G, Ying B, Yong Z, Min X, Jiang C, Hao F. Langmuir, 2012, 28 (40): 14433.
[20] Song X, Lei J, Li Z, Li S, Wang C. Mater. Lett., 2008, 62 (17/18): 2681.
[21] Demir M M, Ugur G, Gulgun M A, Menceloglu Y Z. Macrol.Chem. Phys., 2008, 209(5): 508.
[22] Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Hao F. ACS Appl. Mater. Interfaces, 2014, 6 (8): 5759.
[23] Zhang C, Yang Q, Zhan N, Sun L. Colloids & Surf. A, 2010, 362: 58.
[24] Rujitanaroj P O, Pimpha N, Supaphol P. J. Appl. Polym. Sci., 2010, 116 (4): 1967.
[25] Lee D Y, Lee K H, Kim B Y, Cho N I. J. Sol-Gel Sci. Techn., 2010, 54 (1): 63.
[26] Chun J Y, Kang H K, Jeong L, Kang Y O, Oh J E, Yeo I S, Jung S Y, Park W H, Min B M. Colloids Surf. B, 2010, 78 (2): 334.
[27] Zhu H, Du M, Zhang M, Wang P, Bao S, Wang L, Fu Y, Yao J. Biosens. Bioelectron., 2013, 49: 210.
[28] Dong G, Xiao X, Liu X, Qian B, Ma Z, Ye S, Chen D, Qiu J. J. Nanopart. Res., 2010, 12 (4): 1319.
[29] Li W, Wang J, Chi H, Wei G, Zhang J, Dai L. J. Appl. Polym. Sci., 2012, 123 (1): 20.
[30] Lakshman L R, Shalumon K T, Nair S V, Jayakumar R, Nair S V. Macrom. Sci. Pure Appl. Chem., 2010, 47 (10): 1012.
[31] Pant H R, Kim H J, Joshi M K, Pant B, Park C H, Kim J I, Hui K S, Kim C S. J. Hazard. Mater., 2014, 264: 25.
[32] Cacciotti I, Fortunati E, Puglia D, Maria Kenny J, Nanni F. Carbohydr. Polym., 2014, 103: 22.
[33] Hang Thi A, Lan Ngoc P, Thu Ha Thi V, Park J S. Macromolecular Res., 2012, 20 (1): 51.
[34] Penchev H, Paneva D, Manolova N, Rashkov I. Carbohyd. Res., 2010, 345 (16): 2374.
[35] Zhang L, Li C, Zhang X, Wang S. Asian J. Chem., 2013, 25 (13): 7145.
[36] Wang Y Z, Li Y X, Yang S T, Zhang G L, An D M, Wang C, Yang Q B, Chen X S, Jing X B, Wei Y. Nanotechnology, 2006, 17 (13): 3304.
[37] Pant B, Pant H R, Pandeya D R, Panthi G, Nam K T, Hong S T, Kim C S, Kim H Y. Colloids Surf. A, 2012, 395: 94.
[38] Francis L, Giunco F, Balakrishnan A, Marsano E. Curr. Appl. Phys., 2010, 10 (4): 1005.
[39] Sumitha M S, Shalumon K T, Sreeja V N, Jayakumar R, Nair S V, Menon D. Macrom. Sci. Pure Appl. Chem., 2012, 49 (2): 131.
[40] Jia Y, Liu Q, Zhu X. Advanced Textile Materials, 1-3nd ed, 2011.1235.
[41] Jia Y, Wu C, Dong F, Huang G, Zeng X. Materials, Mechanical Engineering and Manufacture, 1-3nd ed, 2013. 580.
[42] Jang K H, Kang Y O, Park W H. Int. J. Biol. Macromol., 2014, 67: 394.
[43] Zhao D, Feng Q, Lv L, Li J. Materials Processing Technology, 2011. 116.
[44] Wang S, Bai J, Li C, Zhang Y, Zhang J. Colloid Polym. Sci., 2012, 290 (7): 667.
[45] Li B, Xu C, Zheng J, Xu C. Sensors, 2014, 14 (6): 9889.
[46] Jeong L, Cho D, Kwon O H, Min B M, Park W H. Macromolecular Res., 2014, 22 (7): 796.
[47] Bai J, Yang Q, Wang S, Li Y. Korean J. Chem. Eng., 2011, 28 (8): 1761.
[48] Zou M, Du M, Zhu H, Xu C, Li N, Fu Y. Polym. Eng. Sci., 2013, 53 (5): 1099.
[49] Chae H H, Kim B-H, Yang K S, Rheed J I. Synthetic. Met., 2011, 161 (19/20): 2124.
[50] Liu M, Song L, Wang Y, Cheng Z, Li J. High Perform. Polym., 2014, 26 (4): 483.
[51] Jang K H, Yu Y J, Lee Y H, Kang Y O, Park W H. Mater. Lett., 2014, 116: 146.
[52] Mahapatra A, Garg N, Nayak B P, Mishra B G, Hota G. J. Appl. Polym. Sci., 2012, 124 (2): 1178.
[53] Zuo F, Cheng B, Kang W, Ma Y. Advanced Material Science and Technology, 1-2nd ed, 2011. 271.
[54] Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C. ACS Appl. Mater. Interfaces, 2013, 5 (13): 6201.
[55] Jeun J P, Seo D K, Kim H B, Kang P H. 5th International Conference on Times of Polymers Top and Composites, 2010. 284.
[56] Pant H R, Pandeya D R, Nam K T, Baek W I, Hong S T, Kim H Y. J Hazard. Mater., 2011, 189 (1/2): 465.
[57] Han X J, Huang Z M, Huang C, He C L. Computer Science for Environmental Engineering and Ecoinformatics,2nd ed, 2011. 348.
[58] Kurtycz P, Karwowska E, Ciach T, Olszyna A, Kunicki A. Fibers and Polymers, 2013, 14 (8): 1248.
[59] Hassan M S, Amna T, Sheikh F A, Al-Deyab S S, Choi K E, Hwang I H, Khil M S. Ceram. Int., 2013, 39 (3): 2503.
[60] Kim H R, Kim B S, Kim I S. Mater. Chem. Phys., 2012, 135 (2/3): 1024.
[61] Zhang C L, Lv K P, Huang H T, Cong H P, Yu S H. Nanoscale, 2012, 4 (17): 5348.
[62] Li X, Cao M, Zhang H, Zhou L, Cheng S, Yao J L, Fan L J. J. Colloid Interface Sci., 2012, 382: 28.
[63] Tong Y, Lu X, Sun W, Nie G, Yang L, Wang C. J. Power Sources, 2014, 261: 221.
[64] Dasari A, Quiros J, Herrero B, Boltes K, Garcia-Calvo E, Rosal R. J. Membrane Sci., 2012, 405: 134.
[65] Numnuam A, Thavarungkul P, Kanatharana P. Anal. Bioanal. Chem., 2014, 406 (15): 3763.
[66] Lei J, Wang W, Song M, Dong B, Li Z, Wang C, Li L. React. Funct. Polym., 2011, 71 (11): 1071.
[67] 韩燕燕(Han Y Y), 王威(Wang W), 宋明晰(Song M X), 李振宇(Li Z Y), 王策(Wang C), 孙景辉(Sun J H). 高等学校化学学报(Chem. J. Chin. U.), 2012, 33 (3): 604.
[68] Fu Y, Liu L, Zhang L, Wang W. ACS Appl. Mater. Interfaces, 2014, 6 (7): 5105.
[69] Nirmala R, Jeon K S, Navamathavan R, Park M, Kim H Y, Park S J. Fibers and Polymers, 2014, 15 (5): 918.
[70] Kim H G, Kim J H. Fibers and Polymers, 2011, 12 (5): 602.
[71] Tijing L D, Amarjargal A, Jiang Z, Ruelo M T G, Park C H, Pant H R, Kim D W, Lee D H, Kim C S. Curr. Appl. Phys., 2013, 13 (1): 205.
[72] Ochanda F O, Barnett M R. J. Am. Ceram. Soc., 2010, 93 (9): 2637.
[73] Chen J, Yang P, Wang C, Zhan S, Zhang L, Huang Z, Li W, Wang C, Jiang Z, Shao C. Nanoscale Res. Lett., 2011, 6.
[74] Yuan T, Zhao B, Cai R, Zhou Y, Shao Z. J. Mater. Chem., 2011, 21 (38): 15041.
[75] Li J, Chen X, Ai N, Hao J, Chen Q, Strauf S, Shi Y. Chem. Phys. Lett., 2011, 514 (1/3): 141.
[76] Su C, Liu L, Zhang M, Zhang Y, Shao C. CrystEngComm., 2012, 14 (11): 3989.
[77] Mishra S, Ahrenkiel S P. J. Nanomater., 2012, 2012(2): 183.
[78] Liu H, Bai J, Li C, Xu W, Sun W, Xu T, Huang Y, Li H. RSC Advances, 2014, 4 (7): 3195.
[79] An G H, Ahn H J. Ecs Solid State Letters, 2013, 2 (5): M33.
[80] Liu H, Bai J, Wang S, Li C, Guo L, Liang H, Xu T, Sun W, Li H. Colloids Surf. A, 2014, 448: 154.
[81] Zheng B, Liu G, Yao A, Xiao Y, Du J, Guo Y, Xiao D, Hu Q, Choi M M F. Sensor Actuat. B-Chem., 2014, 195: 431.
[82] Wang W, Feng Z, Jiang W, Zhan J. CrystEngComm., 2013,15 (7): 1339.
[83] Kang H, Zhu Y, Jing Y, Yang X, Li C. Colloids Surf. A, 2010, 356 (1/3): 120.
[84] Miao Y E, He S, Zhong Y, Yang Z, Tjiu W W, Liu T. Electrochim. Acta, 2013, 99: 117.
[85] Wang R, Guo J, Chen D, Miao Y E, Pan J, Tjiu W W, Liu T. J. Mater. Chem., 2011, 21 (48): 19375.
[86] Xu L, Xing R, Song J, Xu W, Song H. J. Mater. Chem. C, 2013, 1 (11): 2174.
[87] He H, Wang J, Gao Q, Chang M, Ren Z, Zhang X, Li X, Weng W, Han G. Colloids Surf. B, 2013, 111: 693.
[88] Jin G, Prabhakaran M P, Nadappuram B P, Singh G, Kai D, Ramakrishna S. J. Biomaterials Sci-Polym. E, 2012, 23 (18): 2337.
[89] Nirmala R, Kang H S, Park H M, Navamathavan R, Jeong I S, Kim H Y. J. Biomed. Nanotechnology, 2012, 8 (1): 125.
[90] Han E, Wu D, Qi S, Tian G, Niu H, Shang G, Yan X, Yang X. ACS Appl. Mater. Interfaces, 2012, 4(5): 2583.
[91] Amarjargal A, Tijing L D, Shon H K, Park C H, Kim C S. Appl. Surf. Sci., 2014, 308: 396.
[92] Zanden C, Luo X, Ye L, Liu J. Compos. Sci. Technol., 2014, 94: 54.
[93] Kacmaz S, Ertekin K, Mercan D, Oter O, Cetinkaya E, Celik E. Spectrochim. Acta A, 2015, 135: 551.
[94] Lee S Y, Kim K J. Textile Bioengineering and Informatics Symposium Proceedings, 1-3nd ed, 2013. 153.
[95] Senturk-Ozer S, Chen T, Degirmenbasi N, Gevgilili H, Podkolzin S G, Kalyon D M. Nanoscale, 2014, 6 (15): 8527.
[96] Kim J G, Shi D, Park M S, Jeong G, Heo Y U, Seo M, Kim Y J, Kim J H, Dou S X. Nano Res., 2013, 6 (5): 365.
[97] Poulose S, Panda T, Nair P P, Theodore T. J Nanosci. Nanotechnol., 2014, 14 (2): 2038.
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[5] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[13] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[14] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[15] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.