English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1448-1458 DOI: 10.7536/PC150427 前一篇   后一篇

• 综述与评论 •

锁核酸分子信标在分子识别与生物分析中的应用

桂珍1, 严枫1*, 李金昌1, 葛梦圆1, 鞠熀先2   

  1. 1. 南京医科大学附属肿瘤医院检验科 江苏省恶性肿瘤分子生物学与转化医学重点实验室 南京 210009;
    2. 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210093
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 严枫 E-mail:yanfeng2007@sohu.com
  • 基金资助:
    国家自然科学基金项目(No.21475063),江苏省临床医学专项基金项目(No.BL2013036)和江苏省医学领军人才与创新团队基金项目(No.LJ201131)资助

Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis

Gui Zhen1, Yan Feng1*, Li Jinchang1, Ge Mengyuan1, Ju Huangxian2   

  1. 1. Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing 210009, China;
    2. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21475063), the Special Project in Clinic Medicine of Jiangsu Province (No.BL2013036), and the Medicine Leading Talents of Jiangsu Province (No.LJ201131).
分子信标是一种荧光探针,闭合时呈发夹结构。其5'末端修饰荧光基团,3'末端修饰猝灭基团。当目标存在时,环部与目标结合,发夹打开,发出荧光。锁核酸是一类双环状寡核苷酸衍生物,能够遵循碱基互补配对原则与核酸结合。锁核酸分子信标技术,结合了分子信标无需分离未结合探针而直接检测的优势和锁核酸亲合力强、热稳定性好、抗酶切以及体内无毒等特点,在核酸检测方面具有灵敏度高、特异性好的独特优势,近年来得到广泛关注。本文介绍了锁核酸修饰分子信标的结构、功能、设计要点,及其研究现状和一些重要进展,并讨论了目前锁核酸分子信标在分子识别及生物分析中的应用及存在的问题和发展前景。
Molecular beacons are stem-loop hairpin-structured fluorescence probes with a fluorescent dye at 5' end and a fluorescence quencher at 3' end. When a target complementary sequence is absent, the molecular beacons do not fluoresce, because the formation of the hairpin structure brings the quencher and fluorophore into close proximity, whereby fluorescence is quenched with high efficiency. When a target molecule is present, the hybridization between the target and the loop sequence of the molecular beacon results in the spatial separation of the fluorophore and quencher, which opens the stem-loop structure of molecular beacons to emit fluorescence. Locked nucleic acid is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. It possesses excellent binding affinity to nucleic acid, high biostability and resists to nuclease degradation. Due to the excellent sensitivity and high specificity, the combination of the molecular beacons and locked nucleic acid has aroused wide concern. In this review, we intensively summarize the structure, function, design essentials, current research topics and some important progress. In addition, we also discuss the applications, potential problems and perspective of locked nucleic acid molecular beacons in molecular recognition and bioanalysis.

Contents
1 Introduction
2 Structure and function of molecular beacons
3 Structure and properties of locked nucleic acid
4 Application of LNA in molecular recognition and biomedicine
4.1 LNA antisense
4.2 LNA-modified siRNA (siLNA)
4.3 LNA-modified DNAzyme (LNAzymes)
5 LNA in biotechnology
5.1 LNA primers and PCR
5.2 LNA probes and hybridization
5.3 LNA modification in aptamers
5.4 LNA molecular beacons
6 Design of locked nucleic acid molecular beacons
6.1 Selection of the reporter and quencher
6.2 Hermodynamic aspects
6.3 Balance between selectivity and hybridization rate
6.4 Modification of LNA
7 Applications of LNA-MB in molecular recognition and bioanalysis
7.1 Real time PCR
7.2 mRNA imaging in living cells
7.3 Targeted recognition of microRNA
7.4 Single nucleotide polymorphisms
7.5 Detection of circulating DNA using LNA-MB
8 Conclusion

中图分类号: 

()
[1] Culha M, Stokes D L, Griffin G D, Vo-Dinh T. J. Biomed. Opt., 2004, 9(3): 439.
[2] Li J, Tan W H, Wang K, Xiao D, Yang X, He X, Tang Z. Anal. Sci., 2001, 17: 1149.
[3] Yao G, Tan W H. Anal. Biochem., 2004, 331: 216.
[4] Lin Y W, Ho H T, Huang C C, Chang H T. Nucleic Acids Res., 2008, 36(19): e123.
[5] Singh S K, Koshkin A A, Wengel J, Nielsen P. Chem. Commun., 1998, 455.
[6] Tyagi S, Kramer F R. Nat. Biotechnol., 1996, 14: 303.
[7] Fang X H, Li J W J, Perlette J, Tan W H, Wang K M. Anal. Chem., 2000, 72: 747.
[8] Tan W H, Wang K M, Drake T J. Curr. Opin. Chem. Biol., 2004, 8: 547.
[9] Li J W J, Fang X H, Schuster S M, Tan W H. Angew. Chem. Int. Ed., 2000, 39: 1049.
[10] Tan W H, Fang X H, Li J, Liu X J. Chem. Eur. J., 2000, 6: 1107.
[11] Obika S, Nanbu D, Hari Y, Morio K I, In Y, Ishida T, Imanishi T. Tetrahedron Lett., 1997, 38(50):8735.
[12] Koshkin A A, Rajwanshi V K, Wengel J.Tetrahedron Lett., 1998, 39(24):4381.
[13] Koshkin A A, Singh S, Nielsen P, Rajwanshi V K, Kumar R, Meldgaard M, Olsen C E, Wengel J. Tetrahedron, 1998, 14:3607.
[14] Kaur H, Babu B R, Maiti S. Chem. Rev., 2007, 107(11): 4672.
[15] Petersen M, Nielsen C B, Nielsen K E, Jensen G A, Bondensgaard K, Singh S K. J. Mol. Recognit., 2000, 13: 44.
[16] Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T. Tetrahedron Lett., 1998, 39(30):5401.
[17] Natsume T, Ishikawa Y, Dedachi K, Tsukamoto T, Kurita N. Chem. Phys. Lett., 2007, 446(1/3): 151.
[18] Jepsen J S, Wengel J. Curr. Opin. Drug Discov. Devel., 2004, 7: 188.
[19] Roberts J, Palma E, Sazani P, Orum H, Cho M, Kole R. Mol. Ther., 2006, 14: 471.
[20] Graziewicz M A, Tarrant T K, Buckley B, Roberts J, Fulton L, Hansen H, Orum H, Kole R, Sazani P. Mol. Ther., 2008, 16: 1316.
[21] Guterstam P, Lindgren M, Johansson H, Tedebark U, Wengel J, El Andaloussi S, Langel U. Biochem. J., 2008, 412: 307.
[22] Childs J L, Disney M D, Turner D H. Proc. Natl. Acad. Sci. USA.,2002, 99: 11091.
[23] Fluiter K, Mook O R, Baas F. Methods Mol. Biol., 2009, 487: 189.
[24] Wang L, Yang C J, Medley C D, Benner S A, Tan W H. J. Am. Chem. Soc., 2005, 127: 15664.
[25] Buh Gasparic M, Tengs T, La Paz J L, Holst-Jensen A, Pla M, Esteve T, Zel J, Gruden K. Anal. Bioanal. Chem., 2010, 396: 2023.
[26] Martinez K, Estevez M C, Wu Y, Phillips J A, Medley C D, Tan W H. Anal. Chem., 2009, 81:3448.
[27] Morandi L, Ferrari D, Lombardo C, Pession A, Tallini G. J. Virol. Methods., 2007, 140: 148.
[28] Stenvang J, Silahtaroglu A N, Lindow M, Elmen J, Kauppinen S. Semin. Cancer Biol., 2008, 18: 89.
[29] Vester B, Lundberg L B, Sorensen M D, Babu B R, Douthwaite S, Wengel J. J. Am. Chem. Soc., 2002, 124: 13682.
[30] Donini S, Clerici M, Wengel J, Vester B, Peracchi A. J. Biol. Chem., 2007, 282: 35510.
[31] Fluiter K, Frieden M, Vreijling J, Koch T, Baas F. Oligonucleotides., 2005, 15: 246.
[32] Fahmy R G, Khachigian L M. Nucleic Acids Res., 2004, 32: 2281.
[33] Jakobsen M R, Haasnoot J, Wengel J, Berkhout B, Kjems J. Retrovirology, 2007, 4: 29.
[34] Kaur H, Scaria V, Maiti S. Biochemistry, 2010, 49: 9449.
[35] Schubert S, Furste J P, Werk D, Grunert H P, Zeichhardt H, Erdmann V A, Kurreck J. J. Mol. Biol., 2004, 339: 355.
[36] Vester B, Hansen L H, Lundberg L B, Babu B R,Sorensen M D, Wengel J, Douthwaite S. BMC Mol. Biol., 2006, 7: 19.
[37] Vester B, Lundberg L B, Sorensen M D, Babu B R, Douthwaite S, Wengel J. Biochem. Soc. Trans., 2004, 32: 37.
[38] Schubert S, Gul D C, Grunert H P, Zeichhardt H, Erdmann, V A, Kurreck J. Nucleic Acids Res., 2003, 31: 5982.
[39] Abdelgany A, Uddin M K, Wood M, Taira K, Beeson D. J. RNAi Gene Silencing, 2005, 1: 88.
[40] Braasch D A, Corey D R. Chem. Biol., 2001, 8(1):1.
[41] Vester B, Wengel J. Biochemistry, 2004, 43(42):13233.
[42] 李晓平(Li X P).湖南大学硕士论文(Master Dissertation of HuNan University of Bioscience and Technology), 2010.
[43] Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hökfelt T, Broberger C, Porreca F, Lai J, Ren K, Ossipov M, Koshkin A, Jakobsen N, Skouv J, Oerum H, Jacobsen M H, Wengel J. Proc. Natl. Acad. Sci. USA., 2000, 97(10): 5633.
[44] Straarup E M, Fisker N, Hedtjarn M, Lindholm M W, Rosenbohm C, Aarup V, Hansen H F, Orum H, Hansen J B, Koch T. Nucleic Acids Res., 2010, 38: 7100.
[45] Fluiter K, ten Asbroek A L, de Wissel M B, Jakobs M E, Wissenbach M, Olsson H, Olsen O, Oerum H, Baas F. Nucleic Acids Res., 2003, 31: 953.
[46] Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen J B, Hansen H F, Straarup E M, McCullagh K, Kearney P, Kauppinen S. Nucleic Acids Res., 2008, 36(4): 1153.
[47] Stein C A, Hansen J B, Lai J, Wu S, Voskresenskiy A, Høg A, Worm J, Hedtjärn M, Souleimanian N, Miller P, Soifer H S, Castanotto D, Benimetskaya L, Ørum H, Koch T. Nucleic Acids Res. 2010, 38(1): e3.
[48] Gao S, Dagnaes-Hansen F, Nielsen E J, Wengel J, Besenbacher F, Howard K A, Kjems J. Mol. Ther., 2009, 17: 1225.
[49] Nielsen K E, Rasmussen J, Kumar R, Wengel J, Jacobsen J P, Petersen M. Bioconjugate Chem., 2004, 15: 449.
[50] Petersen M, Bondensgaard K, Wengel J, Jacobsen J P. J. Am. Chem. Soc.,2002, 124: 5974.
[51] Crooke ST. Antisense Nucleic Acid Drug Dev., 1998, 8(2):133.
[52] Davis S, Lollo B, Freier S, Esau C. Nucleic Acids Res., 2006, 34: 2294.
[53] Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. Nature, 2008, 452(7189): 896.
[54] Schubert S, Kurreck J. Handb. Exp.Pharmacol., 2006, 173: 261.
[55] Nulf C J, Corey D. Nucleic Acids Res., 2004, 32 (13): 3792.
[56] Swayze E E, Siwkowski A M, Wancewicz E V, Migawa M T,Wyrzykiewicz T K, Hung G, Monia B P, Bennett C F. Nucleic Acids Res., 2007, 35: 687.
[57] Burdick A D, Sciabola S, Mantena S R, Hollingshead B D, Stanton R, Warneke J A, Zeng M, Martsen E, Medvedev A, Makarov S S, Reed L A, Davis II J W, Whiteley L O. Nucleic Acids Res., 2014, 42(8): 4882.
[58] Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Nature, 2001, 411:494.
[59] Braasch D A, Jensen S, Liu Y, Kaur K, Arar K, White M A, Corey D R. Biochemistry, 2003, 42: 7967.
[60] Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T, Wahlestedt C. Nucleic Acids Res., 2005, 33: 439.
[61] Mook O R, Baas F, de Wissel M B, Fluiter K. Mol. Cancer Ther., 2007, 6: 833.
[62] Wada S, Obika S, Shibata M A, Yamamoto T, Nakatani M, Yamaoka T, Torigoe H, Harada-Shiba M, Mol. Ther. Nucleic Acids. 2012, 1:e45.
[63] Santoro S W, Joyce G F. Proc. Natl. Acad. Sci. U.S.A., 1997, 94: 4262.
[64] Vester B, Lundberg L B, Sørensen M D, Babu B R, Douthwaite S, Wengel J. J. Am. Chem. Soc., 2002, 124: 13682.
[65] Latorra D, Arar K, Hurley J M. Mol. Cell. Probes, 2003, 17: 253.
[66] Levin J D, Fiala D, Samala M F, Kahn J D, Peterson R J. Nucleic Acids Res., 2006, 34: e142.
[67] Ballantyne K N, van Oorschot R A, Mitchell R J. Genomics., 2008, 91: 301.
[68] Asari M, Okuda K, Yajima D, Maseda C, Hoshina C, Omura T, Shiono H, Matsubara K, Shimizu K. J. Forensic Leg. Med., 2015, 31:36.
[69] Ugozzoli L A, Latorra D, Puckett R, Arar K, Hamby K. Anal. Biochem., 2004, 324: 143.
[70] Castoldi M, Benes V, Hentze M W, Muckenthaler M U. Methods, 2007, 43, 146.
[71] Ren J J, Meng X K. J. Zhejiang Univ. Sci. B, 2011, 12(2):149.
[72] Riahi R, Dean Z, Wu T H, Teitell M A, Chiou P Y, Zhang D D, Wong P K. Analyst, 2013, 138(17): 4777.
[73] Fontenete S, Guimarães N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N. PLoS One, 2013, 8(11): e81230.
[74] Syed M A, Pervaiz S.Oligonucleotides, 2010, 20: 215.
[75] Mayer G. Angew. Chem. Int. Ed., 2009, 48: 2672.
[76] Thiel K W. Oligonucleotides, 2009, 19: 209.
[77] Keefe A D, Pai S, and Ellington A. Nat. Rev. Drug Discovery, 2010, 9: 537.
[78] Darfeuille F, Hansen J B, Orum H, Di Primo C, Tolumé J J. Nucleic Acids Res., 2004, 32: 3101.
[79] Darfeuille F, Reigadas S, Hansen J B, Orum H, Di Primo C, Toulmé J J. Biochemistry., 2006, 45: 12076.
[80] Schmidt K S, Borkowski S, Kurreck J, Stephens A W, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann V A. Nucleic Acids Res., 2004, 32: 5757.
[81] Lebars I, Richard T, Di Primo C, Tolumé J J. Mol. Dis., 2007, 38: 204.
[82] Shi H, He X, Cui W, Wang K, Deng K, Li D, Xu F. Anal. Chim. Acta, 2014, 812: 138.
[83] Marras S A E. Mol. Biotechnol., 2008, 38: 247.
[84] Fang X H, Li J J, Perlette J, Tan W H. Anal. Chem., 2000, 72(23): 747A.
[85] Marras S A E, Kramer F R, Tyagi S. Nucleic Acids Res., 2002, 30(21): e122.
[86] Parkhurst K M., Parkhurst L J. Biochemistry., 1995, 34(1): 293.
[87] Marras S A. Mol. Biotechnol., 2008, 38(3):247.
[88] Tsourkas A, Behlke M A, Bao G. Nucleic Acids Res., 2002, 30(19):4208.
[89] Vargas, D Y, Raj A., Marras, S A, Kramer, F R., Tyagi S. Proc. Natl. Acad. Sci. U S A., 2005, 102(47):17008.
[90] Monroy-Contreras R, Vaca L. J. nucleic acids, 2011: 741723.
[91] Tsourkas A, Behlke M A, Rose S D, Bao G. Nucleic Acids Res., 2003, 31(4): 1319.
[92] Bonnet G, Tyagi S, Libchaber A, Kramer F R. Proc. Natl. Acad. Sci., 1999, 96: 6171.
[93] Tan L, Li Y, Drake T J, Moroz L, Wang K, Li J, Munteanu A, Yang C Y J, Martinez K, Tan W H. Analyst, 2005, 130: 1002.
[94] Yang C Y J, Wang L, Wu Y R, Kim Y G, Medley C D. Nucleic Acids. Res., 2007, 35: 4030.
[95] Li J, Tan W. Anal. Biochem., 2003, 312: 251.
[96] Warshawsky I, Mularo F. J. Clin. Pathol., 2011, 64(10):905.
[97] Morandi L, Biase D E, Visani M, Cesari V, Maglio G D, Pizzolitto S, Pession A, Tallini G. PLoS One, 2012,7(4): p1.
[98] Wang K, Huang J, Yang X, He X, Liu J. Analyst, 2013, 138(1): 62.
[99] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. J. Mol. Biol., 1990, 215: 403.
[100] Wu Y R,Yang C Y J, Moroz L L., Tan W H. Anal. Chem., 2008, 80: 3025.
[101] Ambros V. Cell, 2001, 107: 823.
[102] Bartel D P. Cell, 2004, 116: 281.
[103] Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Nucleic Acids Res.,2004, 32(22): e175.
[104] Lundmark M, Kørner C J, Nielsen T H. Physiol. Plant., 2010, 140(1): 57.
[105] Dong H F, Ding L, Yan F, Ji H X, Ju H X. Biomaterials, 2011, 32: 3875.
[106] Cerra C, Oliver J, Roberts S A., Horne G, Newman W G., Mohiyiddeen L. Human Reproduction, 2014, 29(12): 2832.
[107] Kamau E, Alemayehu A, Feghali K C, Tolbert L S, Ogutu B, Ockenhouse C F. Malar J., 2012, 11:23.
[108] Caseley E A, Muench S P, Roger S, Mao H J, Baldwin S A, Jiang L H. Int. J. Mol. Sci., 2014, 15(8): 13344.
[109] Motzer R J, Hutson T E, Hudes G R, Figlin R A, Martini J F, English P A, Huang X, Valota O, Williams J A. Cancer Chemother. Pharmacol., 2014, 74(4): 739.
[110] Johnson M P, Haupt L M, Griffiths L R. Nucleic Acids Res., 2004, 32(6): e55.
[111] Wang K, Tang Z, Yang C J, Kim Y, Fang X, Li W, Wu Y, Medley C D, Cao Z, Li J, Colon P, Lin H, Tan W. Angew. Chem. Int. Ed., 2009, 48(5): 856.
[112] Mhlanga M M, Malmberg L. Methods., 2001, 25(4): 463.
[113] Rupp J, Solbach W, Gieffers J. Appl. Environ. Microbiol., 2006,72(5): 3785.
[114] Gao Z F, Ling Y, Lu L, Chen N Y, Luo H Q, Li N B. Anal. Chem., 2014,86(5): 2543.
[115] Mandel P, Metais P. C R Seances Soc. Biol. Fil, 1948, 142: 241.
[116] Sorenson G D, Pribish D M, Valone F H., Memoli V A., Bzik D J., Yao S L. Cancer Epidemiol Biomarkers Prev., 1994, 3: 67.
[117] Fleischhacker M, Schmidt B. Biochim. et Biophys. Acta., 2007, 1775: 181.
[1] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[2] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[3] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[4] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[5] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[6] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[7] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[8] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[9] 单艳群, 王晓英*. 赭曲霉毒素A的电化学适体传感检测[J]. 化学进展, 2018, 30(6): 797-808.
[10] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[11] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[12] 郑小辉, 夏立新, 毛宗万. 基于核酸修饰新策略的抗肿瘤铂配合物设计[J]. 化学进展, 2016, 28(7): 1029-1038.
[13] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[14] 王辉, Ponmani Jeyakkumar, Sangaraiah Nagarajan, 孟江平, 周成合. 苝类化合物研究与应用[J]. 化学进展, 2015, 27(6): 704-743.
[15] 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 基于共轭聚合物的核酸生物传感器的应用[J]. 化学进展, 2015, 27(12): 1799-1807.