English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1260-1274 DOI: 10.7536/PC150203 前一篇   后一篇

• 综述与评论 •

模拟肽的构象限制在药物设计中的应用

侯辉, 孙德群*   

  1. 山东大学(威海)海洋学院 威海 264209
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 孙德群 E-mail:dequn.sun@sdu.edu.cn

Conformational Restriction of Peptidomimetics in Drug Design

Hou hui, Sun Dequn*   

  1. Marine College, Shandong University at Weihai, Weihai 264209, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
构象限制的模拟肽具有更好的生物活性和代谢稳定性,可以作为酶和受体活性位点的多肽替代物,是重要的药物设计工具。将特定的结构引入到生物活性肽中进行构象限制就得到了模拟肽,设计合成特定结构的模拟肽,需要一些方法作为指导,这些方法可以使模拟肽按设想产生特定的生物活性而减少设计的盲目性。本文综述了模拟肽构象限制的两类方法,即模拟肽的局部构象限制和模拟肽的整体环化。通过这两种主要方式的结构改进得到的构象限制的模拟肽,对改进模拟肽的药效学和药代动力学性质起了重要作用,包括提高其生物活性、选择性、代谢的稳定性和吸收性质。
Peptidomimetics are important drug design tools as substitutes for peptides in active sites of enzymes and receptors. The incorporation of some specific structure into biologically active peptides may lead to conformationally restricted peptidomimetics. Conformational restriction of peptidomimetics may significantly improve the pharmacodynamic properties and pharmacokinetic properties, including bioactivity, selectivity to receptors, stability of metabolism and absorption properties. To develop new approaches, allow rational design and synthesis of restricted peptidomimetics is of importance. Herein, we review two approaches to access conformationally restricted peptidomimetics, the local conformational restriction approach and the overall cyclization approach.

Contents
1 Introduction
2 Local conformational restriction of peptide
2.1 Cα-methylated amino acids
2.2 N-methylated amino acids
2.3 Cα,Cα-dialkyl amino acids
2.4 Cβ,Cβ-dialkyl amino acids
2.5 α,β-unsaturated amino acids
2.6 C-C cyclization of amino acids
2.7 C-N cyclization of amino acids
2.8 N-N cyclization of amino acids
3 The overall cyclization of peptides
3.1 The overall cyclization methods of peptides
3.2 Other cyclization methods expect lactam bond
4 Conclusion

中图分类号: 

()
[1] Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Drug Discovery Today, 2010, 15(1/2): 40.
[2] Craik D J, Fairlie D P, Liras S. Chem. Biol. Drug Des., 2013, 81(1): 136.
[3] Wood M P, Cole1 A L, Ruchala P, Waring A J, Rohan L C, Marx P, Tarwater P M, Gupta P, Cole A M. PLoS One, 2013, 8(2): 1.
[4] Crisma M, Formaggio F, Toniolo C, Yoshikawa T, Wakamiya T. J. Am. Chem. Soc., 1999, 121: 3272.
[5] Pirat C, Farce A, Lebègue N, Renault N, Furman C, Millet R, Yous S, Speca S, Berthelot P. J. Med. Chem., 2012, 55: 4027.
[6] Olson G L, Bolin D R, Bonner M P. J. Med. Chem., 1993, 36: 3039.
[7] Mills F D, Antharam V C, Ganesh O K, Elliott D W, McNeill S A, Long J R. Biochemistry, 2008, 47: 8292.
[8] Demirev P A. Anal. Chem., 2013, 85: 779.
[9] Chang L C, Yang C Y, Chu A C N, Lin Y J, Lai S M. Pharmaceutics, 2011, 8: 1767.
[10] Han J, Sun L D, Chu Y Y, Li Z, Huang D D, Zhu X Y. J. Med. Chem., 2013, 56: 9955.
[11] Bausch D, Thomas S, Mino-Kenudson M, Castillo C F, Bauer T W, Williams M, Warshaw A L, Thayer S P, Kelly K A. Clin. Cancer Res., 2011, 17(2): 302.
[12] Jung K H, Angela H S, Stanley A T. Molecular pharmacology, 2011, 80(3): 357.
[13] 周家驹(Zhou J J), 雷静(Lei J), 谢桂荣(Xie G R). 化学进展(Progress in Chemistry), 2000, 12(2/3): 332.
[14] Karle Z L, Flppen-Anderson J L, Uma K, Balaram P. Biopolymers, 1990, 29(14): 1835.
[15] Toniolo C, Crisma M, Formaggio F, Valle C, Cavicchioni G, Precigoux G, Aubry A, Kamphuis J. Biopolymers, 1993, 33 (7): 1061.
[16] Dehner A, Planker E, Gemmecker G, Broxterman Q B, Bisson W, Formaggio F, Crisma M, Toniolo C, Kessler H. J. Am. Chem. Soc., 2001, 123: 6678.
[17] Dechantsreiter M A, Planker E, Matha B, Lohof E, Kessler H. J. Med. Chem., 1999, 42: 3033.
[18] Chatterjee J, Ovadia O, Zahn G, Marinelli L, Hoffman A, Gilon C, Kessler H. J. Med. Chem., 2007, 50: 5878.
[19] Nowick S S. Acc. Chem.Res., 2008, 41: 1319.
[20] Formaggio F, Crisma M, Toniolo C. Macromolecules, 2003, 36: 8164.
[21] Evans M C, Pradhan A, Venkatraman S, Ojala W H, Gleason W B, Mishra R K, Johnson R L. J. Med. Chem., 1999, 42: 1441.
[22] Kruszynski M, Lammek B, Manning M. J. Med. Chem., 1980, 23: 364.
[23] Baldisserotto A, Ferretti V, Destro F, Franceschini C, Marastoni M, Gavioli R, Tomatis R. J. Med. Chem., 2010, 53: 6511.
[24] Subasinghe N, Schulte M, Chan M Y M, Roon R J, Koerner J F, Johnsony R L. J. Med. Chem., 1990, 33: 2734.
[25] Cativiela C, Fraile J M, Mayoral J A. Bull. Chem. Soc. Jpn., 1990, 63(8): 2456.
[26] Jimenez A I, Cativiela C, Marraud M. Tetrahedron, 2000, 5353.
[27] 张刘生(Zhang L S), 潘成学(Pan C X). 广西师范大学学报(Journal of Guangxi Normal University), 2011, 29(3): 37.
[28] Naiema M, Julien D, Bruno C, Laurence V B, Nicole B Sandrine O, Fariza R, Michele R R, Sames S. J. Med. Chem., 2004, 47: 6392.
[29] Martin S F, Dorsey G O, Gane T, Hillier M C. J. Med. Chem., 1998, 41: 1581.
[30] Schiller P W, Weltrowska G, Nguyen T M D, Lemieux C, Chung N N, Marsden B J, Wilkes B C. J. Med. Chem., 1991, 34: 3125.
[31] Yamazaki T, Zhu Y F, Probstl A, Chadha R K, Goodman M. J. Org. Chem., 1991, 56: 6644.
[32] Kyle D J, Hicks R P, Blake P R, Klimkowski V J. Inflammatory Disease and Therapy,1990, 5: 131.
[33] Kyle D J, Martin J A, Burch R M, Carter J P, Lu S F, Meeker S, Prosser J C, Sullivan J P, Togo J. J. Med. Chem., 1991, 34: 2649.
[34] Ji H T, Gomez-Vidal J A, Martasek P, Roman L J, Silverman R B. J. Med. Chem., 2006, 49: 6254.
[35] Fulda S, Wick W, Weller M, Debati K M. Nat. Med., 2002, 8: 808.
[36] Arn C R, Chiorean M V, Heldebrant M P, Gores G J, Kaufmann S H. J. Biol. Chem., 2002, 277: 44236.
[37] Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T. Cancer Res., 2003, 63: 831.
[38] Sun H Y, Nikolovska-Coleska Z, Yang C Y, Xu L, Liu M L, Tomita Y, Pan H G, Yoshioka Y,Krajewski K, Roller P P, Wang S M. J. Am. Chem. Soc., 2004, 126: 16686.
[39] Sun H Y, Lu J F, Liu L, Yang C Y, Wang S M. ACS Chem. Biol., 2014, 9: 994.
[40] Mandal P K, Gao F Q, Lu Z, Ren Z Y, Ramesh R, Birtwistle J S, Kaluarachchi K K, Chen X M, Liao W S, McMurray J S. J. Med. Chem., 2011, 54: 3549.
[41] Miller S M, Simon R J, Ng S, Zuckermann R N, Kerr J M, Moos W H. Drug Develop. Res., 1995, 35(1): 20.
[42] Suwai S, Kodadek T. Org. Biomol. Chem., 2013, 11: 2088.
[43] Ventosa-Andrés P, Hradilova L , Krch Dň ák V. ACS Comb. Sci., 2014, 16: 359.
[44] Dubbelboer I R, Lilienberg E, Hedeland M, Bondesson U, Piquette-Miller M. Mol. Pharmaceutics, 2014, 11: 1301.
[45] Grotenbreg G M, Kronemeijer M, Timmer M S M, Oualid F E, Verdoes M, Spalburg E. J. Org. Chem., 2004, 69: 7851.
[46] Cardenas F, Thormann M, Feliz M, Caba J M, Lloyd-WillIams P, Giralt E. J. Org. Chem., 2001, 66: 4580.
[47] Dimaio J, Nguyen T M D, Lenieux C. J. Med. Chem., 1982, 25: 1432.
[48] Mosberg H I, Hurst R, Hruby V J. Life Sci., 1983, 32: 2565.
[49] Nam N H, Ye G F, Sun G Q, Parang K. J.Med.Chem., 2004, 47: 3131.
[50] Mendel S J. Clin. Cancer Res., 1997, 3(12): 2703.
[51] Sleuijfer S, Coquard R I, Papai Z J. Clin. Oncol., 2009, 27(19): 3126.
[52] Chamrád I, Rix U, Stukalov A, Gridling M, Parapatics K, Müller A, Altiok S, Colinge J, Superti-Furga G, Haura E B, Bennett K L. J. Proteome Res., 2013, 12: 4005.
[53] Schiller P W.Peptides, 1984, 6: 219.
[54] Wynants C, Bernd M, Kogler H. Tetrahedron, 1988, 44(3): 941.
[55] Figliozzi G M, Goldsmith R, Banville S C. Methods in Enzymology, 1996, 267: 437.
[56] Patch J A, Barron A E. J. Am. Chem. Soc., 2005, 25: 12092.
[57] Shin S B Y, Yoo B, Todaro L J, Kirshenbaum K. J. Am. Chem. Soc., 2007, 129(11): 3218.
[58] Dutton F E, Lee B H, Johnson S S, Coscarelli E M, Lee P H. J. Med. Chem., 2003, 46: 2057.
[59] Montero A, Beierle J M, Olsen C A, Ghadiri M R. J. Am. Chem.Soc., 2009, 131: 3033.
[60] Tahoori F, Balalaie S, Sheikhnejad R, Sadjadi M, Boloori P. Amino Acid, 2014, 46(4): 1033.
[61] Gerona-Navarro G, Yoel-Rodríguez, Mujtaba S, Frasca A, Patel J, Zeng L, Plotnikov A N, Osman R, Zhou M M. J. Am. Chem. Soc., 2011, 133: 2040.
[62] Yurek-George A, Cecil A R L, Mo A H K, Wen S J, Rogers H, Habens F,Maeda S, Yoshida M, Packham G, Ganesan A. J. Med. Chem., 2007, 50: 5720.
[63] Almeida A M, Li R, Gellman S H. J. Am. Chem. Soc., 2012, 134: 75.
[64] Johannesson P, Lindeberg G, Tong W M, Gogoll A, Synnergren B, Nyberg F, Karlen A, Hallberg A. J. Med. Chem., 1999, 42: 4524.
[65] Bailey K L, Molinski T F. J. Org. Chem., 1999, 64: 2500.
[66] Kase H, Kaneko M, Yamada K. J. Antibiot., 1987, 40: 450.
[67] Sano S, Ikai K, Kuroda H, Nakamura T, Obayashi A, Ezure Y, Enomoto H. J. Antibiot., 1986, 39: 1674.
[68] Pessah I N, Molinski T F, Meloy T D, Wong P, Buck E D, Allen P D, Mohr F C, Mack M M. Am. J. Physiol., 1997, 41: C601.
[69] Johannesson P, Lindeberg G, Johansson A, Nikiforovich G V, Gogoll A, Synnergren B, Greves M L, Nyberg F, Kerlen A, Hallerg A. J. Med. Chem., 2002, 45: 1767.
[70] Light A. Proteins, Structure and Function. Englewood Cliffs NJ:Prentice-Hall Inc. 1975.
[71] Murugavel R, Choudhury A, Walawalkar M G, Pothiraja R, Rao C N R. Chem. Rev., 2008, 108: 3549.
[72] Michele G, Raphaeel D. WO 2012123928 A1 20120920, 2012.
[73] Van Oijen A H, Erkelens C, van Boom J H, Liskamp R M J. J. Am. Chem. Soc., 1989, 111: 9103.
[74] Wu Y L, Kohn J. J. Am. Chem. Soc., 1991, 113: 687.
[75] Davies J S, Tremeer E J. J. Chem. Soc., 1987, 5: 1099.
[76] Thairivongs S, Blinn R J, Pal D T. J. Med. Chem.,1991, 34: 1276.
[77] Robinson J A. Acc. Chem.Res., 2008, 41: 1278.
[78] Patgiri A, Jochim A L, Arora P S. Acc. Chem. Res. 2008, 41: 1289.
[79] Bernal F, Tyler A F, Korsmeyer S J, Walensky L D, Verdine G L. J. Am. Chem. Soc., 2007, 129: 2456.
[80] Walensky L D, Bird G H. J. Med. Chem., 2014, 57: 6275.
[81] Bird G H, Gavathiotis E, LaBelle J L, Katz S G, Walensky L D. ACS Chem. Biol., 2014, 9: 831.
[82] Spokoyny A M, Zou Y K, Ling J J,Yu H T, Lin Y S, Pentelute B L. J. Am. Chem. Soc., 2013, 135: 5946.
[83] Brown S P, Smith A B. J. Am. Chem. Soc., 2015, 137: 4034.
[1] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[2] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[3] 王童, 文姣, 李良春, 郑仁林, 孙德群. 脱氢氨基酸的合成及其在药物研发中的应用[J]. 化学进展, 2020, 32(1): 55-71.
[4] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[5] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[6] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[7] 贾斌, 马养民*, 陈镝, 陈璞, 胡岩. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 1067-1081.
[8] 刘吕花, 郑延延*, 张丽芳, 熊成东. 硬组织植入生物活性聚醚醚酮复合材料[J]. 化学进展, 2017, 29(4): 450-458.
[9] 展鹏, 王学顺, 刘新泳. “精准医疗”背景下的分子靶向药物研究——精准药物设计策略浅析[J]. 化学进展, 2016, 28(9): 1363-1386.
[10] 袁硕, 孙德群. β-模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2016, 28(7): 1084-1098.
[11] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[12] 杨冬梅, 周宇涵, 常晴, 赵一龙, 曲景平. 三氟甲基烷基酮的生物活性及合成方法[J]. 化学进展, 2014, 26(06): 976-986.
[13] 崔建国, 刘亮, 甘春芳, 肖琦, 黄燕敏. 芳(杂)环甾体化合物的合成及生理活性研究[J]. 化学进展, 2014, 26(0203): 320-333.
[14] 王路, 周百斌, 刘家仁. 抗癌多金属氧酸盐[J]. 化学进展, 2013, 25(07): 1131-1141.
[15] 任彦荣, 田菲菲, 周鹏*. 计算肽学[J]. 化学进展, 2012, (9): 1674-1682.