English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1240-1250 DOI: 10.7536/PC150132 前一篇   后一篇

• 综述与评论 •

新型纳米荧光探针在微流控细菌芯片检测中的应用

蒋艳1,3, 徐溢1,2,3*, 王人杰1,3, 苏喜1,3, 董春燕1   

  1. 1. 重庆大学化学化工学院 重庆 400030;
    2. 重庆大学新型微纳器件与系统技术国防重点学科实验室 重庆 400030;
    3. 重庆大学微纳系统及新材料技术国际研发中心 重庆 400030
  • 收稿日期:2015-01-01 修回日期:2015-05-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 徐溢 E-mail:xuyibbd@sina.com
  • 基金资助:
    国家自然科学基金项目(No.21375156),国家高技术研究发展计划(863)项目(No. 2015AA021104),重庆市科技攻关项目(CSCT, 2012gg B10001)和重点大学基础研究项目(No.106112015CDJZR225512)资助

Application of Novel Nano Fluorescent Probes for Bacteria Detection on the Microchip

Jiang Yan1,3, Xu Yi1,2,3*, Wang Renjie1,3, Su Xi1,3, Dong Chunyan1   

  1. 1. Chemistry and Chemical Engineering College, Chongqing University, Chongqing 400030, China;
    2. Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400030, China;
    3. International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China
  • Received:2015-01-01 Revised:2015-05-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    supported by the National Natural Science Foundation of China (No.21375156), the National High Technology Research and Development Program of China (No.2015AA021104), the Research Project of New Detection Technology for Toxic Substances and Illegal Additive in Food, Drug (CSTC, 2012gg B1001), and the Fundamental Research Funds for the Central Universities(No.106112015CDJZR225512).
微流控芯片分析技术可以集成不同的生物化学分析功能单元,广泛应用于生化分析领域,在细菌检测方面具有传统检测方法不可比拟的优越性。近来年,在微流控细菌芯片中引入高荧光强度、低背景荧光干扰和高选择性的纳米荧光探针为实现细菌高效检测分析提供了新的研究途径和技术手段。本文通过对细菌检测中的几类新型荧光标记探针的介绍和比较,分析其荧光效应和应用特点,尤其是在细菌检测中的应用特性,重点综述了新型高效的纳米荧光探针与微流控细菌芯片分析方法和技术结合,实现微尺度空间和荧光检测模式下的细菌高效检测。
Microfluidic system integrated with different functional units is widely employed in biochemical analysis and shows great potentials compared with conventional approaches for bacteria detection. Recently, novel nano fluorescent probes with improved fluorescent properties, low background and enhanced selectivity provide an efficient way for pathogenic bacteria quantitation, especially when they are combined with miniaturized platform or microfluidic device. Several novel nano fluorescent probes for bacteria detection are introduced and discussed in this review. Moreover, special attention has been paid to the recent research about combination of these approaches in bacteria analysis using variety of nano fluorescent probes on the microfluidic chip. It is also focused that the development of effective bacteria detection under the micro scale space with fluorescent monitoring mode.

Contents
1 Introduction
2 The technology of bacteria detection on microfluidic chips
3 New nano-fluorescent probes for bacteria labeled and detection
4 Detection of bacteria by nano-fluorescent probes on microfluidic chip
4.1 Detection of bacteria with nano-fluorescent probes
4.2 Detection of bacteria with nano-fluorescent probes and aptamers
4.3 Detection of bacteria with nano-fluorescent probes and immunoassay
5 Conclusion and perspective

中图分类号: 

()
[1] Signoretto C, Canepari P. Current Opinion in Biotechnology, 2008, 19(3): 248.
[2] Maukonen J. Mätt? J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M. Journal of Industrial Microbiology and Biotechnology, 2003, 30(6): 327.
[3] Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84: 487.
[4] Delalibera I, Humber R A, Hajek A E. Journal of Microbiology, 2004, 50(8): 579.
[5] 李莉(Li L). 科技情报开发与经济(Sci-Tech Information Development & Economy), 2009, 18(17): 208.
[6] Shang L, Dong S, Nienhaus G U. Nano Today, 2011, 6(4): 401.
[7] Yang L J. Analytical Letters, 2012, 45(2/3): 187.
[8] Bridle H, Miller B, Desmulliez M P Y. Water Research, 2014, 55: 256.
[9] Yoo J H, Woo D H, Chang M S, Chun M S. Sensors and Actuators B: Chemical, 2014, 191: 211.
[10] Madren S M, Hoffman M D, Brown P J B, Kysela D T, Brun Y V, Jacobson S C. Anal. Chem., 2012, 84: 8571.
[11] Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S, Lin F. Lab Chip, 2011, 11(9): 1574.
[12] Fritzsch F S O, Rosenthal K, Kampert A, Howitz S, Dusny C, Blank L M, Schmid A. Lab Chip, 2013, 13: 397.
[13] Verbarg J, Plath W D, Shriver-Lake L C, Peter B, Howell P B, Erickson J S, Golden J P, Ligler F S. Anal. Chem., 2013, 85: 4944.
[14] Ren K N, Chen Y, Wu H K. Current Opinion in Biotechnology, 2014, 25: 78.
[15] Ma S, Tang Y, Liu J, Wu J. Talanta, 2014, 120: 135.
[16] Tan H Y, Loke W K, Tan Y T, Nguyen N T. Lab Chip, 2008, 8(6): 885.
[17] Luo C X, Zhu X J, Yu T, Luo X J, Ouyang Q, Ji H, Chen Y. Biotechnol. Bioeng., 2008, 101(1): 190.
[18] Inatomi K I, Izuo S I, Lee S S. Letters in Applied Microbiology, 2006, 43: 296.
[19] Zhang J Y, Do J, Premasiri W R, Ziegler L D, Klapperich C M. Lab Chip, 2011, 10(23): 3265.
[20] Foudeh A M, Didar T F, Veres T, Tabrizian M. Lab Chip, 2012, 12: 3249.
[21] 林秉承(Lin B C). 图解微流控芯片实验室(Graphic Microfluidic Chip Laboratory). 北京:科学出版社(Beijing:Science Press), 2008. 278.
[22] 李永新(Li Y X),黎源倩(Li Y Q),渠凌丽(Qu L L).分析化学(Chinese Journal of Analytical Chemistry), 2008, 26(12): 34.
[23] 霍丹群(Huo D Q),刘振(Liu Z),侯长军(Hou C J),杨军(Yang J),罗小刚(Luo X G),法焕宝(Fa H B),董家乐(Dong J L),张玉婵(Zhang Y C),张国平(Zhang G P), 李俊杰(Li J J).分析化学(Chinese Journal of Analytical Chemistry), 2010, 38(9): 1357.
[24] Lei K F. Recent Patents on Nanotechnology, 2013, 7(1): 81.
[25] Sierra-Rodero M, Fernández-Romero J M, Gómez-Hens A. Trends in Analytical Chemistry, 2014, 57: 23.
[26] Yoon J Y, Kim B. Sensors, 2012, 12: 10713.
[27] Medina-Sánchez M, Misererea S, Merkoçi A. Lab Chip, 2012, 12: 1932.
[28] Hu C, Yue W Q, Yang M S. Analyst, 2013, 138: 6709.
[29] Yang L L, Zhou Y X, Huang T X, Wu L, Yan X M. Anal. Chem., 2012, 84 (3): 1526.
[30] Sandhu S, Schouten J A, Thompson J, Mark Davis M, Bugg T D H. Analyst, 2012, 137: 1130.
[31] Gey A, Werckenthin C, Poppert S, Straubinger R K. Journal of Veterinary Diagnostic Investigation, 2013, 25(3): 386.
[32] Daniel M, Anna F, Cecile G, Norbert L, Jacques S, John C W, Serge B. Photodiagnosis and Photodynamic Therapy, 2014, 11: 372.
[33] Gao X H, Jiang L, Su X O, Qin J H, Lin B C. Electrophoresis, 2009, 30(14): 2481.
[34] Jiang X R, Shao N, Jing W W, Tao S C, Liu S X, Sui G D. Talanta, 2014, 122: 246.
[35] Yamaguchi N, Torii M, Uebayashi Y, Nasu M. Applied and Environmental Microbiology, 2011, 77 (4): 1536.
[36] 李栋顺(Li D S),徐溢(Xu Y),彭金兰(Peng J L),周帧(Zhou Z),甘俊(Gan J),王尧(Wang Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(1): 49.
[37] Nuchtavorn N, Bek F, Macka M, Suntornsuk W, Suntornsuk L. Electrophoresis, 2012, 33: 1421.
[38] Belgrader P, Benett W, Hadleg D. Science, 1999, 284(5413): 449.
[39] Fronczek C F, Park T S, Harshman D K, Nicolini A M, Yoon J Y. RSC Adv., 2014, 4: 11103.
[40] Menon K, Joy R A, Sood N, Mittal R K. Bio. Nano Sci., 2013, 3: 356.
[41] King M A. J. Immunol. Methods, 2000, 243(1): 155.
[42] Shapiro H M. J. Microbiol. Methods, 2000, 42(1): 3.
[43] Saito S, Massie T L, Maeda T, Nakazumi H, Colyer C L. Anal. Chem., 2012, 84: 2452.
[44] Fei X N, Gu Y C. Progress in Natural Science, 2009, 19 (1): 1.
[45] Smith A M, Ruan G, Rhyner M N, Nie S. Ann. Biomed. Eng., 2006, 34(1): 3.
[46] Li F, Zhao Q, Wang C, Lu X F, Li X F, Le X C. Anal. Chem., 2010, 82: 3399.
[47] Wadhavane P D, Galian E R, Izquierdo M A, Aguilera-Sigalat J. J. Am. Chem. Soc., 2012, 134: 20554.
[48] Wen C Y, Hu J, Zhang Z L, Tian Z Q, Ou G P, Liao Y L, Li Y, Xie M, Sun Z Y, Pang D W. Anal. Chem., 2013, 85: 1223.
[49] Cao L, Wang X, Meziani M J, Lu F, Wang H, Luo P G, Lin Y, Harryff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37): 11318.
[50] Pires N M M, Dong T. Sensors, 2013, 13: 15898.
[51] Ghosh C R, Paria S. Chem. Rev., 2012, 112: 2373.
[52] Zhang H, Zhou Z, Yang B, Gao M. The Journal of Physical Chemistry B, 2003, 107(1): 8.
[53] Mandal T K, Parvin N. J. Biomed. Nanotechnol., 2011, 7(6): 846.
[54] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K S, Pathak P, Xie S Y. J. Am. Chem. Soc., 2006,128( 24) : 7756.
[55] Li H, Kang Z, Liu Y, Lee S T. J. Mater. Chem., 2012, 22: 24230.
[56] Liu R, Wu D, Liu S, Liu S, Koynow K, Knoll W, Li Q. Angew. Chem. Int. Ed., 2009, 48: 4598.
[57] Wang G, Ma Q, Dou W C, Kanwal S, Wang G N, Yuan P F, Su X G. Talanta, 2009, 77: 1358.
[58] Zhou X, Zhou J. Anal. Chem., 2004, 76: 5302.
[59] Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H, Huang C. Anal. Chem., 2009, 81(3): 930.
[60] Wang M, Hou W, Mi C C, Wang W X, Xu Z R, Teng H H, Xu S K. Anal. Chem., 2009, 81: 8783.
[61] Huang C C, Chen C T, Shiang Y C, Lin Z H, Chang H T. Anal. Chem., 2009, 81: 875.
[62] Ikanovic M, Rudzinski W E, Bruno J G, Allman A, Carrillo M P, Dwarakanath S, Bhahdigadi S, Rao P, Kiel J L, Andrews C J. J. Fluoresc., 2007, 17(2): 193.
[63] Carrillo-Carrión C, Simonet B M, Valcárcel M. Biosensors and Bioelectronics, 2011, 26: 4368.
[64] Wang R J, Xu Y, Zhang T, Jiang Y. Anal. Methods, 2015, 7: 1701.
[65] Disney M D, Zheng J, Swager T M. Seeberger P H. J. Am. Chem. Soc., 2004,126: 13343.
[66] Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y. Analytica Chimica Acta, 2012, 723: 1.
[67] Fu X, Huang K, Liu S. Analytical and Bioanalytical Chemistry, 2010, 396(4): 1397.
[68] Wang Z P, Miu T, Xu H A, Duan N, Ding X Y, Li S A. Journal of Microbiological Methods, 2011,83(2): 179.
[69] Mitchell K A, Chua B, Son A. Biosensors and Bioelectronics, 2014, 54: 229.
[70] 徐溢(Xu Y),曹强(Cao Q),曾雪(Zeng X),吴永杰(Wu Y J),张文品(Zhang W P).高等学校化学学报(Chemical Journal of Chinese Universities), 2009, 30(5): 876.
[71] 彭金兰(Peng J L),徐溢(Xu Y),吴永杰(Wu Y J), 传娜(Chuan N),甘俊(Gan J),田鹏(Tian P).分析化学(Chinese Journal of Analytical Chemistry), 2011, 39(9): 1307.
[72] Wang R J, Xu Y, Jiang Y, Chuan N, Su X, Ji J G. Analytical Methods, 2014, 6(17): 6802.
[73] Torres-Chavolla E, Alocilja E C. Biosensors and Bioelectronics, 2009, 24(11): 3175.
[74] Wang Y X, Ye Z Z, Si C Y, Ying Y B. Chinese Journal of Analytical Chemistry, 2012, 40(4): 634.
[75] Zuo P, Li X J, Dominguez D C, Ye B C. Lab Chip, 2013, 13(19): 3921.
[76] Li Y B, Su X L. Journal of Rapid Methods and Automation in Microbiology, 2006, 14(1): 96.
[77] Dharmasiri U, Witek M A, Adams A A, Osiri J K, Hupert M L, Bianchi T S, Roelke D L, Soper S A. Anal. Chem., 2010, 82(7): 2844.
[78] Lim C T, Zhang Y, Biosensors and Bioelectronics, 2007, 22(7): 1197.
[79] Jiang X S, Wang R H, Wang Y, Su X L, Ying Y B, Wang J P, Li Y B. Biosensors and Bioelectronics, 2011, 29(1): 23.
[80] Qiu J M, Zhou Y, Chen H, Lin J M. Talanta, 2009, 79: 787.
[81] Nichkova M, Dosev D, Davies A E, Gee S J, Kennedy I M, Hammock B D. Analytical Letters, 2007, 40(7): 1423.
[82] Park T J, Lee S Y, Heo N S, Seo T S. Angew. Chem. Int. Ed., 2010, 49: 7019.
[83] Xiong L H, Cui R, Zhang Z L, Yu X, Xie Z X, Shi Y B, Pang D W. ACS Nano, 2014,8(5): 5116.
[84] Luo P G, Stutzenberger F J. Advances in Applied Microbiology, 2008, 63(2): 145.
[85] Abubakar I, Irvine L, Aldus C F, Wyatt G M, Fordham R, Schelenz S, Shepstone L, Howe A, Peck M, Hunter P R. Health Technology Assessment, 2007,11(36): 1.
[86] Su X L, Li Y. Anal. Chem., 2004, 76(16): 4806.
[87] Kim G, Moon J H, Moh C Y,Lim J G. Biosensors and Bioelctronics, 2015, 67(15): 243.
[88] Sanvicens N, Pascual N, Fernández-Argüelles M T, Adrián J, Costa-Fernández J M, Sánchez-Baeza F, Sanz-Medel A, Marco M P. Anal. Bioanal. Chem., 2011, 399: 2755.
[89] Wang R J, Ni Y N, Xu Y, Jiang Y, Dong C Y, Chuan N. Analytica Chimica Acta, 2015, 853: 710.
[90] Morarka A, Agrawal S, Kale S, Kale A, Ogale S, Paknikar K, Bodas D. Biosensors and Bioelectronics, 2011, 26: 3050.
[91] Agrawal S, Morarka A, Bodas D, Paknikar K M. Appl. Biochem. Biotechnol., 2012, 167: 1668.
[92] Herr J K, Smith J E, Medley C D, Shangguan D, Tan W. Anal. Chem., 2006,78(9): 2918.
[93] Liu J S, Zang L J, Wang Y R, Liu G N. Journal of Luminescence, 2014, 147: 155.
[94] Bagwe R P, Yang C, Hilliard L R, Tan W. Langmuir, 2004, 20: 8336.
[95] Chen Z Z, Cai L, Dong X M, Tang H W, Pang D W. Biosensors and Bioelectronics, 2012, 37(1): 75.
[96] Lee S Y, Lee J, Lee H S, Chang J H. Biosensors and Bioelectronics, 2014, 53: 123.
[97] Chen X X, Gan M, Xu H, Chen F, Ming X, Xu H Y, Xu F, Liu C W. Food Control, 2014, 46: 225.
[98] Vendrell M, Zhai D, Er J C, Chang Y T. Chem. Rev., 2012, 112, 4391.
[99] Wei S Y, Wang Q, Zhu J H, Sun L Y, Lin H F, Guo Z H. Nanoscale, 2011, 3: 4474.
[100] Ruedas-Rama M J, Walters J D, Orte A, Hall E A H. Analytica Chimica Acta, 2012,751: 1.
[101] Rajendran V K, Bakthavathsalam P, Ali B M J. Microchimica Acta, 2014, 181: 1815.
[102] Mechery S J, Zhao X J, Wang L, Hilliard L R, Munteanu A, Tan W H. Chemistry-An Asian Journal, 2006, 1(3): 384.
[103] He X, Hu C, Guo Q, Wang K, Li Y, Shangguan J. Biosensors and Bioelectronics, 2013, 42: 460.
[104] So H M, Park D W, Jeon E K, Kim Y H, Kim B S, Lee C K, Choi S Y, Kim S C, Chang H, Lee J O. Small, 2008, 4(2): 197.
[105] Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. Angew.Chem.Int. Ed., 2010, 49(33): 5708.
[106] Wang G N, Gao Y, Huang H, Su X G. Analytical and Bioanalytical Chemistry, 2010, 398 (2): 805.
[107] Liu G, He Y. Journal of Colloid and Interface Science, 2012, 388(1): 86.
[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[3] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[4] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[5] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[6] 林彩琴, 姚波* . 数字PCR技术进展[J]. 化学进展, 2012, 24(12): 2415-2423.
[7] 郝丽, 徐春秀, 程和勇, 刘金华, 殷学锋*. 微流控芯片测定单细胞内化学组分的进展[J]. 化学进展, 2012, 24(08): 1544-1553.
[8] 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用[J]. 化学进展, 2011, 23(9): 1945-1958.
[9] 黄华璠, 梁坤, 刘玉鹏, 黄士堂, 褚泰伟. F-18标记放射性药物的新方法与新技术[J]. 化学进展, 2011, 23(7): 1501-1506.
[10] 瞿祥猛, 林荣生, 陈宏. 基于微流控芯片的微阵列分析[J]. 化学进展, 2011, 23(01): 221-230.
[11] 沈玉勤 姚波 方群. 磁场控制技术在微流控芯片中的应用*[J]. 化学进展, 2010, 22(01): 133-139.
[12] 姜萍,屈锋,谭信,李勤,耿利娜,邓玉林. 基于微流控芯片电泳的生物分子间相互作用研究*[J]. 化学进展, 2009, 21(09): 1895-1904.
[13] 耿利娜,姜萍,徐建栋,车宝泉,屈锋,邓玉林. 纳米技术在毛细管电泳和微流控芯片电泳生物大分子分离中的应用* [J]. 化学进展, 2009, 21(09): 1905-1921.
[14] 李俊君,陈强,李刚,赵建龙,朱自强. 微流控技术应用于蛋白质结晶的研究*[J]. 化学进展, 2009, 21(05): 1034-1039.
[15] 王钰蓉,陈恒武. 芯片毛细管电泳-安培检测系统*[J]. 化学进展, 2009, 21(01): 200-209.