English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 841-847 DOI: 10.7536/PC150120 前一篇   后一篇

• 综述与评论 •

超分子化学中的多点统计作用:设计与应用

陈峰, 万德成*   

  1. 同济大学材料科学与工程学院 上海 201804
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 万德成 E-mail:wandecheng@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 51273149)资助

Multisite Statistical Interactions in Supramolecular Chemistry: Design and Application

Chen Feng, Wan Decheng*   

  1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51273149).
在超分子主客体作用力中,多点统计作用和多价作用及多配体作用有根本差别,前者对主体的空间形态、尺寸和电子环境没有严格要求,实现起来比较容易。多点统计作用是一种动态几率作用,合理设计主体的电子环境,可以显著增强主客体作用强度;而通过拓扑(几何)环境的设计可以削弱其他分子的统计竞争作用,同样可以显著增强主客体作用,作用常数提高近十万倍。利用多点统计作用可以实现对水中微量和痕量污染物的高效捕捉,包括尺寸较小的重金属离子、染料和那些高度亲油的致癌芳烃;也可用于多肽的分离提取,最低能达到飞摩尔级以下的痕量提取;调控统计作用几率还可以以热力学方式调控客体释放速率。本文就超分子体系中的多点统计作用的应用及特点进行了总结。
Among supramolecular interaction styles, a multisite statistical interaction is fundamentally different from multivalent or multiligand interactions because the former has no rigorous requirement on the morphology, size and electronic environment of the host, thus is ready to realize. Multisite statistical interactions are dynamic and random in nature, with reasonable design of the electronic environment of a host, the host-guest interaction strength can be significantly enhanced.While by topology design, the competitive statistical interaction by other molecules can be weakened. This can similarly lead to enhanced host-guest complement, and the binding constant can be improved by 105-fold. With the aid of multisite statistical interactions, highly effective capture of the micro- and trace pollutants in water is realized, including small-sized heavy metals, dyes and the highly hydrophobic and carcinogenic aromatic compounds. It can also be applied in peptide extraction at sub-femtomolar level. Tuning the host-guest statistical probability can lead to thermodynamically well-controlled release of a guest from a nanocapsule. The feature and application of multisite statistical interactions are here reviewed in this article.

Contents
1 Introduction
2 Application of multisite statistical host-guest interactions
2.1 Eliminating micro- and trace pollutants in water by multisite statistical interaction promoted adsorption
2.2 Application of multisite statistical interactions on peptide extraction
2.3 Selective encapsulation, separation and controlled release promoted by multisite statistical interactions
3 Influencing factors on multisite statistical interactions and their design and applications
4 Conclusion

中图分类号: 

()
[1] Mammen M, Choi S K, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37: 2754.
[2] James T D, Sandanayake K R A S, Shinkai S. Angew. Chem., Int. Ed., 1996, 35: 1910.
[3] van Velzen E U T, Engbersen J F J, Reinhoudt D N. J. Am. Chem. Soc., 1994, 116: 3597.
[4] Huisman B H, Rudkevich D M, van Veggel F C J M, Reinhoudt D N. J. Am. Chem. Soc., 1996, 118: 3523.
[5] Angelova P, Solel E, Parvari G, Turchanin A, Botoshansky M, Golzhauser A, Keinan E. Langmuir, 2013, 29: 2217.
[6] Kelly B C, Ikonomou M G, Blair J D, Morin A E, Gobas F A P C. Science, 2007, 317, 236.
[7] Fisk A T, Norstrom R J, Cymbalisty C D, Muir D. C G. Environ. Toxicol. Chem., 1998, 17: 951.
[8] Connolly J P, Pedersen C J. Environ. Sci. Technol., 1988, 22: 99.
[9] Beyer J, Jonsson G, Porte C, Krahn M M, Ariese F. Environ. Toxicol. Phar., 2010, 30: 224.
[10] Wan D C, Chen F, Geng Q R, Lu H, Willcock H, Liu Q M, Wang F Y K, Zou K D, Jin M, Pu H T, Du J Z. Sci. Rep., 2014, 4: 7296.
[11] Feng X, Fryxell G E, Wang L Q, Kim A Y, Liu J, Kemner K M. Science, 1997, 276: 923.
[12] Mercier L,Pinnavaia T J. Adv. Mater., 1997, 9: 500.
[13] Walcarius A, Mercier L. J. Mater. Chem., 2010, 20: 4478.
[14] Chen F, Wan D C, Jin M, Pu H T. submitted.
[15] Wang Y L, Liu M B, Xie L Q, Fang C Y, Xiong H M, Lu H J. Anal. Chem., 2014, 86: 2057.
[16] Chen F, Wan D C, Chang Z H, Pu H T, Jin M. Langmuir, 2014, 30: 12250.
[17] Balzani V, Ceroni P, Gestermann S, Gorka M, Kauffmann C, Vogtle F. Tetrahedron, 2002, 58: 629.
[18] 万德成 (Wan D C), 金明 (Jin M), 浦鸿汀 (Pu H T). 化学进展 (Progress in Chemistry), 2011, 23: 2095.
[19] Wan D C, Jin M, Pu H T, Pan H Y, Chang Z H. React. Funct. Polym., 2010, 70: 916.
[20] Tian W, Lv A L, Xie Y C, Wei X Y, Liu B W, Lv X Y. RSC Adv., 2012, 2: 11976.
[21] Tian W, Fan X D, Kong J, Liu Y Y, Liu T, Huang Y. Polymer, 2010, 51: 2556.
[22] Zhou Y M, Tian W, Yang G, Fan X D. Beilstein J. Org. Chem. 2014, 10: 2696.
[23] Tian W, Wei X Y, Liu Y Y, Fan X D. Poly. Chem., 2013, 4: 2850.
[24] Wan D C, Pu H T, Jin M, Wang G W, Huang J L. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 2373.
[25] Zhang P, Yin J, Jiang X S. Langmuir, 2014, 30: 14597.
[26] Deng S J, Xu H J, Jiang X S, Yin J. Macromolecules, 2013, 46: 2399.
[27] Wang R, Yu B, Jiang X S, Yin J. Adv. Funct. Mater. 2012, 12: 2606.
[28] Li B, Jiang X S, Yin J. J. Mater. Chem., 2012, 22: 17976.
[29] Wan D C, Liu H H, Jin M, Pu H T. Eur. Polym. J., 2014, 55: 9.
[30] Newkome G R, Moorefield C N, Baker G R, Johnson A L, Behera R K. Angew. Chem. Int. Ed., 1991, 30: 1176.
[31] Tomalia D A, Naylor A, Goddard W A. Angew. Chem. Int. Ed., 1990, 29: 138.
[32] Jansen J F G A, de Brabander-van den Berg E M M, Meijer E W. Science, 1994, 266: 1226.
[33] Sunder A, Kramer M, Hanselmann R, Mulhaupt, Frey H. Angew. Chem. Int. Ed., 1999, 38: 3552.
[34] Stiriba S E, Kautz H, Frey H. J. Am. Chem. Soc., 2002, 124: 9698.
[35] Chen Y, Shen Z, Pastor-Perez L, Frey H, Stiriba S E. Macromolecules, 2005, 38: 227.
[36] Wan D C, Pu H T, Cai X Y. Macromolecules, 2008, 41: 7787.
[37] Liu H J, Chen Y, Zhu D D, Shen Z, Stiriba S E. React. Funct. Poly., 2007, 67: 383.
[38] Liu H H, Yang P F, Wan D C. J. Polym. Sci., Part B: Polym. Phys., 2015, 53: 566.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[12] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[13] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[14] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[15] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.