English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1002-1013 DOI: 10.7536/PC150150 前一篇   后一篇

• 综述与评论 •

纳米薄层分子筛的合成与应用

闵媛媛, 尚蕴山, 宋宇, 李国栋, 巩雁军*   

  1. 中国石油大学(北京)化学工程学院 重质油国家重点实验室 CNPC 催化重点实验室 北京 102249
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 巩雁军 E-mail:gongyj@cup.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No. 2012CB215002)和国家自然科学基金项目(No. 21176255, 21276278)资助

The Synthesis of Nanosheets Zeolite and Its Catalytic Application

Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun*   

  1. State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation, College of Chemistry Engineering, China University of Petroleum-Beijing, Beijing 102249, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the State Key Development Program for Basic Research of China (No. 2012CB215002) and the National Natural Science Foundation of China (No. 21176255, 21276278).
纳米薄层分子筛(nanosheets zeolite)由于其独特的准二维结构,具有有序的微孔-介孔特征、适宜的表面酸性和良好的扩散性能,已成为分子筛控制合成及其应用研究中标志性的研究热点之一。该类分子筛在合成中采用不同双头或者多头季铵盐(碱)表面活性剂作结构导向剂,所得的纳米薄层分子筛具有晶面二维生长趋向和可控薄层交错形貌,在吸附、催化应用等多方面展现出独特的应用潜力。本文系统总结了季铵盐类表面活性剂对纳米薄层分子筛合成、物化性质的影响以及此类分子筛催化应用研究方面的最新进展,着重介绍了MFI结构的纳米薄层分子筛对甲醇转化制烃、贝克曼重排、异构化、烯烃环氧化等重要催化反应中的优势。最后对这种结构新颖的纳米薄层分子筛在合成和其他应用领域方面未来的研究方向进行了展望。
Nanosheets zeolite is a brand new type of pseudo 2-dimensional zeolite, possessing distinctive growth trend in the (010) crystal surface and hierarchical micro-mesoporous texture, which has triggered an immense interest in the development of nanosheets and its application. The specific morphology can be obtained and dominantly controlled by using multi-quaternary ammonium surfactants as the structure directing agent. Due to its predominant micro-mesoporous property, optimized surface acidity and lower restriction of the diffusion of macro-molecule with respect to conventional bulk zeolite, nanosheets zeolite has tremendous application potential in adsorption and catalysis fields. This review summarizes the advances in the synthesis and the characterization of ZSM-5 zeolite nanosheets with novel morphology. Furthermore, nanosheets zeolite exhibits premium advantages in many applications. Some different reactions that MFI nanosheets zeolite has been applied to are discussed in detail, including methanol conversion to hydrocarbons and macro-molecules involved reaction, i.e. Beckman rearragement reactions. Additionally, newly developed metal-modified nanosheets zeolite has been applied to isomerization, hydroxylation reaction and the epoxidation of olefins etc. Although nanosheets zeolite possesses a large number of strong points compared with conventional zeolite, there is still a long way to go for MFI nanosheets zeolite in improving the synthesis in a more facile/economical way as well as expanding the applications. The outlook section cast great expectation on nanosheets for enlightening the innovative design of other materials.

Contents
1 Introduction
2 Synthesis of nanosheets zeolites by quaternary ammoniums
2.1 MFI nanosheets zeolite
2.2 Nanosheets zeolite with two different framework intergrown
2.3 Hierarchical zeolite with other kinds of topologies
3 Properties of MFI nanosheets zeolite
3.1 2-Dimensional growth orientation
3.2 Ordered mesoporosity
3.3 Acid properties
3.4 Adsorption properties
4 Application of MFI nanosheet zeolite
4.1 Methanol conversion to hydrocarbons
4.2 Beckman rearrangement reaction
4.3 Applications over the metal-modified MFI nanosheets
5 Conclusion and outlook

中图分类号: 

()
[1] Baerlocher C, McCusker L B, Olson D H, Atlas of Zeolite Framework Types. Elsevier, 2007.
[2] Gopalakrishnan S, Zampieri A, Schwieger W. J. Catal., 2008, 260 (1): 193.
[3] Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37 (11): 2530.
[4] Wang H, Pinnavaia T J. Angew. Chem. Int. Ed., 2006, 45 (45): 7603.
[5] Wang J, Yue W, Zhou W, Coppens M O. Microporous Mesoporous Mater., 2009, 120 (1/2): 19.
[6] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461 (7261): 246.
[7] Machoke A G, Knoke I Y, Lopez-Orozco S, Schmiele M, Selvam T, Marthala V R R, Spiecker E, Unruh T, Hartmann M, Schwieger W. Microporous Mesoporous Mater., 2014, 190: 324.
[8] Na K, Park W, Seo Y, Ryoo R. Chem. Mater., 2011, 23 (5): 1273.
[9] 王务刚(Wang W W), 张少龙(Zhang S L), 张兰兰(Zhang L L), 王艳(Wang Yan), 刘晓玲(Liu X L), 巩雁军(Gong Y J), 窦涛(Dou T). 物理化学学报(Acta Phys. Chim. Sin.), 2013, (09): 2035.
[10] Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132 (12): 4169.
[11] Park W, Yu D, Na K, Jelfs K E, Slater B, Sakamoto Y, Ryoo R. Chem. Mater., 2011, 23 (23): 5131.
[12] Liu B, Li C, Ren Y, Tan Y, Xi H, Qian Y. Chem. Eng. J., 2012, 210: 96.
[13] Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333 (6040): 328.
[14] Jung J, Jo C, Cho K, Ryoo R. J. Mater. Chem., 2012, 22 (11): 4637.
[15] Xu D, Jing Z, Cao F, Sun H, Che S. Chem. Mater., 2014, 26 (15): 4612.
[16] Kore R, Srivastava R, Satpati B. Chem. Eur. J., 2014, 20 (36): 11511.
[17] Emdadi L, Liu D X. J. Mater. Chem. A, 2014, 2 (33): 13388.
[18] Emdadi L, Wu Y, Zhu G, Chang C C, Fan W, Pham T, Lobo R F, Liu D. Chem. Mater., 2014, 26 (3): 1345.
[19] Kumar P, Varoon Agrawal K, Tsapatsis M, Andre Mkhoyan K. Microsc. Microanal., 2014, 20 (S3): 390.
[20] Xu D, Swindlehurst G R, Wu H, Olson D H, Zhang X, Tsapatsis M. Adv. Funct. Mater., 2014, 24 (2): 201.
[21] Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Science, 2012, 336 (6089): 1684.
[22] Khaleel M, Wagner A J, Mkhoyan K A, Tsapatsis M. Angew. Chem. Int. Ed. Engl., 2014, 53 (36): 9456.
[23] Inayat A, Schneider C, Schwieger W. Chem. Commun., 2015, 51(2): 279.
[24] Na K, Choi M, Ryoo R. J. Mater. Chem., 2009, 19 (37): 6713.
[25] Choi M, Na K, Ryoo R. Chem. Commun., 2009, (20): 2845.
[26] Jo C, Jung J, Ryoo R. Microporous Mesoporous Mater., 2014, 194: 83.
[27] Na K, Choi M, Ryoo R. Microporous Mesoporous Mater., 2013, 166: 3.
[28] Cui D, Zhou B, Yin J, Lou M. Aust. J. Chem., 2014, 67: 929.
[29] Roth W J, ?ejka J. Catal. Sci. Technol., 2011, 1 (1): 43.
[30] Selvam T, Inayat A, Schwieger W. Dalton Trans., 2014, 43 (27): 10365.
[31] Tsapatsis M. AIChE J., 2014, 60 (7): 2374.
[32] Opanasenko M V, Shamzhy M V, Jo C, Ryoo R, ?ejka J. Chem. Cat. Chem., 2014, 6 (7): 1919.
[33] Roth W J, Nachtigall P, Morris R E, Cejka J. Chem. Rev., 2014, 114 (9): 4807.
[34] Moller K, Bein T. Science, 2011, 333 (6040): 297.
[35] Verboekend D, Perez-Ramirez J. Catal. Sci. Technol., 2011, 1 (6): 879.
[36] Egeblad K, Christensen C H, Kustova M, Christensen C H. Chem. Mater., 2008, 20 (3): 946.
[37] Liu B, Duan Q, Li C, Zhu Z, Xi H, Qian Y. New J. Chem., 2014, 38 (9): 4380.
[38] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359 (6397): 710.
[39] Li Z H. Chinese Physics C, 2013, (10): 110.
[40] Corma A, García H. Chem. Rev., 2003, 103 (11): 4307.
[41] Wu L, Magusin P C M M, Degirmenci V, Li M, Almutairi S M T, Zhu X, Mezari B, Hensen E J M. Microporous Mesoporous Mater., 2014, 189: 144.
[42] Liu D, Zhang X, Bhan A, Tsapatsis M. Microporous Mesoporous Mater., 2014, 200: 287.
[43] Seo Y, Cho K, Jung Y, Ryoo R. ACS Catal., 2013, 3 (4): 713.
[44] Bai P, Olson D H, Tsapatsis M, Siepmann J I. Chemphyschem., 2014, 15 (11): 2225.
[45] Kim J C, Cho K, Ryoo R. Appl. Catal. A, 2014, 470: 420.
[46] Lee H W, Park S H, Jeon J K, Ryoo R, Kim W, Suh D J, Park Y K. Catal. Today, 2014, 232: 119.
[47] Luo H Y, Bui L, Gunther W R, Min E, Román-Leshkov Y. ACS Catal., 2012, 2 (12): 2695.
[48] Wu Y, Emdadi L, Wang Z, Fan W, Liu D. Appl. Catal. A, 2014, 470: 344.
[49] Kim J, Choi M, Ryoo R. J. Catal., 2010, 269 (1): 219.
[50] Kim W, Ryoo R. Catal. Lett., 2014, 144 (7): 1164.
[51] Bleken B T L, Wragg D S, Arstad B, Gunns A E, Mouzon J, Helveg S, Lundegaard L F, Beato P, Bordiga S, Olsbye U, Svelle S, Lillerud K P. Top. Catal., 2013, 56 (9/10): 558.
[52] Hu S, Shan J, Zhang Q, Wang Y, Liu Y, Gong Y, Wu Z, Dou T. Appl. Catal. A, 2012, 445/446: 215.
[53] 张少龙(Zhang S L), 张兰兰(Zhang L L), 王务刚(Wang W W), 闵媛媛(Min Y Y), 马通(Ma T), 宋宇(Song Y), 巩雁军(Gong Y J), 窦涛(Dou T). 物理化学学报(Acta Phys. Chim. Sin.), 2014, (03): 535.
[54] Izumi Y, Ichihashi H, Shimazu Y, Kitamura M, Sato H. Bull. Chem. Soc. Jpn., 2007, 80 (7): 1280.
[55] Takahashi T, Nasution M N A, Kai T. Appl. Catal. A, 2001, 210 (1/2): 339.
[56] 慕旭宏(Mu X H), 王殿中(Wang D Z), 王永睿(Wang Y R), 林民(Lin M), 程时标(Cheng S B), 舒兴田(Shu X T).催化学报(Chinese Journal of Catalysis), 2013, (01): 69.
[57] Kim J, Park W, Ryoo R. ACS Catal., 2011, 1 (4): 337.
[58] Verheyen E, Jo C, Kurttepeli M, Vanbutsele G, Gobechiya E, Korányi T I, Bals S, Van Tendeloo G, Ryoo R, Kirschhock C E A, Martens J A. J. Catal., 2013, 300: 70.
[59] Feng S, Pei S, Yue B, Ye L, Qian L, He H. Catal. Lett., 2009, 131 (3/4): 458.
[60] Koekkoek A J J, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen E J M. J. Catal., 2013, 299: 81.
[61] Hensen E J M, Zhu Q, Janssen R A J, Magusin P C M M, Kooyman P J, van Santen R A. J. Catal., 2005, 233 (1): 123.
[62] Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1 (8): 901.
[63] Notari B. Adv. Catal., 1996, 41: 253.
[64] Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Science, 2011, 334 (6052): 72.
[65] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres i Xamena F X, Gascon J. Nat Mater., 2015, 14 (1): 48.
[66] Peng Y, Li Y S, Ban Y J, Jin H, Jiao W M, Liu X L, Yang W S. Science, 2014, 346 (6215): 1356.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[3] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[4] 王鹏远, 郭昌胜, 高建峰, 徐建. 石墨相氮化碳(g-C3N4)与Bi系复合光催化材料的制备及在环境中的应用[J]. 化学进展, 2017, 29(2/3): 241-251.
[5] 向垒, 孙腾飞, 莫测辉, 李彦文, 蔡全英, 李慧. 季铵盐类化合物环境问题研究进展[J]. 化学进展, 2016, 28(5): 727-736.
[6] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[7] 陈艳平, 程党国, 陈丰秋, 詹晓力. Cu-ZSM-5分子筛催化分解及选择性催化还原NO[J]. 化学进展, 2014, 26(0203): 248-258.
[8] 彭鹏, 张占全, 王有和, Fazle Subhan, 阎子峰. 多级孔分子筛的制备与催化应用[J]. 化学进展, 2013, 25(12): 2028-2037.
[9] 曾莎莎,唐瑞仁,Artem,Melman,黄可龙. 手性相转移催化剂及其在不对称催化反应中的应用[J]. 化学进展, 2006, 18(06): 743-751.
[10] 成岳,李健生,王连军,孙秀云. ZSM-5分子筛膜的研究进展*[J]. 化学进展, 2006, 18(0203): 221-229.
阅读次数
全文


摘要

纳米薄层分子筛的合成与应用