English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 522-531 DOI: 10.7536/PC141123 前一篇   后一篇

• 综述与评价 •

刺激响应星形聚合物的合成及其药物可控释放研究

梁嘉美, 冯岸超, 袁金颖*   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 收稿日期:2014-11-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 袁金颖 E-mail:yuanjy@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21174076, 21374053)资助

Synthesis and Controllable Drug Release of Stimuli-Responsive Star Polymer

Liang Jiamei, Feng Anchao, Yuan Jinying*   

  1. Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2014-11-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21174076, 21374053).
星形聚合物是从一个枝化点呈放射形连接出三条及三条以上线形链的一类具有特殊拓扑结构的聚合物.与组成和分子量相同的线形聚合物相比,星形聚合物具有明确的结构、较窄的分子量分布、较低的黏度和多功能性,已成为高分子领域的研究热点之一.引入刺激响应基团的刺激响应星形聚合物具有随外界环境变化而发生敏感调整的结构特征,并在药物可控释放方面具有重要的应用价值,受到广泛关注.本文总结现阶段刺激响应星形聚合物应用于药物可控释放方面的最新研究成果,主要根据不同的环境刺激信号进行分类,分别介绍了pH、温度、双重或多重刺激响应星形聚合物的合成方法,分析其在溶液中的自组装行为、刺激响应情况和药物可控释放功能,并对相关聚合物体系的改进和发展进行展望.
Star polymer is a kind of polymer with special topological structure, which is in connection radiate out three or more than three linear polymer chains from a single branch core by junction points. It has become one of the hottest research topics in polymer science since its unique spatial shape, clear structure, narrow molecular weight distribution, low viscosity and versatility compared with that of linear polymers with similar chemical compositions and molecular weights. Developing star polymer with stimuli-responsive segments, which can sensitively change their structure in response to external environmental variation such as pH, temperature, redox and so on, has attracted considerable attention over the past few years for its significant application value in controllable drug release. Among them, pH and temperature stimuli-responsive star polymers have been considerably investigated because they are relatively convenient and effective drug carriers in controllable drug release. Herein, we mainly focus on the recent research work related on stimuli-responsive star polymers applied in controllable drug release, and classify them according to different types of environment stimulus. Thus pH-responsive, thermo-responsive, dual or multi stimuli-responsive star polymer systems are relatively investigated. Furthermore, the synthetic methods, self-assembly behavior in aqueous solution, stimuli-responsive behavior and functionality of controlling drug release are introduced, which are necessary to develop more desirable stimuli-responsive star polymers and self-assembly aggregations, promote the mechanism of response to stimulus and expand their applications. Finally, the improvement and development of stimuli-responsive star polymer systems are also prospected.

Contents
1 Introdution
2 Overview of synthesis and controllable drug release of stimuli-responsive star polymer
2.1 pH-responsive star polymer system
2.2 Thermo-responsive star polymer system
2.3 Dual or multi stimuli-responsive star polymer system
3 Conclusion

中图分类号: 

()
[1] Feng A C, Yuan J Y. Macro. Rapid Comm., 2014, 35: 767.
[2] 彭了 (Peng L),冯岸超 (Feng A C),王宏 (Wang H),张慧娟 (Zhang H J),袁金颖 (Yuan J Y). 化学进展 (Progress in Chemistry),2013,25(11):1942.
[3] 冯岸超 (Feng A C),闫强 (Yan Q),袁金颖 (Yuan J Y). 化学进展 (Progress in Chemistry),2012,24(10): 1995.
[4] Yan Q, Xin Y, Zhou R, Yin Y W, Yuan J Y. Chem. Commun., 2011, 34: 9594.
[5] Yan Q, Hu J, Zhou R, Ju Y, Yin Y W, Yuan J Y. Chem. Commun., 2012, 13: 1913.
[6] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2010, 132: 9268.
[7] Peng L, Feng A C, Huo M., Yuan J Y. Chem. Commun., 2014, 86: 13005.
[8] Feng A C, Zhan C B, Yan Q, Liu B W, Yuan J Y. Chem. Commun., 2014, 64: 8958.
[9] Feng A C, Yan Q, Zhang H J, Peng L, Yuan J Y. Chem. Commun., 2014, 36: 4740.
[10] Yang Y Y, Wang X, Hu Y, Hu H, Wu D C, Xu F J. ACS Appl. Mater. Interfaces, 2014, 6: 1044.
[11] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat. Mater., 2008, 6: 442.
[12] Mendes P M. Chem. Soc. Rev., 2008, 11: 2512.
[13] Yan Q, Yuan J Y, Kang Y, Cai Z N, Zhou L L, Yin Y W. Chem. Commun., 2010, 16: 2781.
[14] Yan Q, Wang J B, Yin Y W, Yuan J Y. Angew. Chem. Int. Ed. 2013, 19: 5070.
[15] Yan Q, Zhou R, Fu C, Zhang H J, Yin Y W, Yuan J Y. Angew. Chem. Int. Ed., 2011, 21: 4923.
[16] Peng L, Feng A C, Zhang H J, Wang H, Jian C M, Liu B W, Gao W P, Yuan J Y. Polym. Chem., 2014, 5: 1751.
[17] Liu B W, Zhou H, Zhang H J, Zhou S T, Feng A C, Jian C M, Hu J, Gao W P, Yuan J Y. Macromolecules, 2014, 9: 2938.
[18] Huo M, Yuan J Y, Tao L, Wei Y. Polym. Chem., 2014, 5: 1519.
[19] Wang J, Wang X, Yang F, Shen H, You Y Z, Wu D C. Langmuir, 2014, 30: 13014.
[20] Zhang H J, Yan Q, Kang Y, Zhou L L, Zhou H, Yuan J Y, Wu S Z. Polymer, 2012, 53: 3719.
[21] Pang X, Zhao L, Akinc M, Kim J K, Lin Z. Macromolecules, 2011, 10: 3746.
[22] Yang Y Y, Wang X, Hu Y, Hu H, Wu D C, Xu F J. ACS Appl. Mater. Interfaces, 2014, 6: 1044.
[23] Trollsas M, Hedrick J L. J. Am. Chem. Soc., 1998, 19: 4644.
[24] Klok H A, Becker S, Schuch F, Pakula T, Mullen K. Macromol. Chem. Phys., 2002, 8: 1106.
[25] Angot S, Murthy K S, Taton D, Gnanou Y. Macromolecules, 1998, 21: 7218.
[26] Xia J H, Zhang X, Matyjaszewski K. Macromolecules, 1999, 13: 4482.
[27] 闫强 (Yan Q),隋晓锋 (Sui X F), 袁金颖 (Yuan J Y). 化学进展 (Progress in Chemistry),2008,20(10): 1562.
[28] Yuan W, Yuan J, Zheng S, Hong X. Polymer, 2007, 9: 2585.
[29] Wu W, Liu J, Cao S, Tan H, Li J, Xu F, Zhang X. Int. J. Pharm., 2011, 1: 104.
[30] Liu Y, Li J, Ren J, Lin C, Leng J. Materials Letters, 2014, 8.
[31] Zhang M, Xiong Q, Chen J, Wang Y, Zhang Q, Polym. Chem., 2013, 19: 5086.
[32] Yuan W, Zhang J, Wei J, Zhang C, Ren J. Eur. Polym. J., 2011, 47(5): 949.
[33] Yan Y, Li J, Zheng J, Pan Y, Wang J, He X, Zhang L, Liu D. Colloid Surface B, 2012, 137.
[34] Liu H, Miao K, Zhao G, Li C, Zhao Y. Polym. Chem., 2014, 8: 3071.
[35] Rimann M, Luhmann T, Textor M, Guerino B, Ogier J, Hall H. Bioconjugate Chem., 2008, 2: 548.
[36] Yan Y, Wei D, Li J, Zheng J, Shi G, Luo W, Pan Y, Wang J, Zhang L, He X, Liu D. Acta Biomater., 2012, 6: 2113.
[37] Guo C, Chen W, Lin S, Li H, Cheng D, Wang X, Shuai X. Polymer, 2012, 2: 342.
[38] Liu Y Y, Zhong Y B, Nan J K, Tian W. Macromolecules, 2010, 24: 10221.
[39] Luo Y, Yang X, Xu F, Chen Y, Ren Ting Z. J. Appl. Polym. Sci., 2013, 6: 4137.
[40] Hong H, Mai Y, Zhou Y, Yan D, Chen Y. J. Polym. Sci. Pol. Chem., 2008, 2: 668.
[41] Hirao A, Inushima R, Nakayama T, Watanabe T, Yoo H-S, Ishizone T, Sugiyama K, Kakuchi T, Carlotti S, Deffieux A. Eur. Polym. J., 2011, 4: 713.
[42] Lutz J-F. J. Polym. Sci. Pol. Chem., 2008, 11: 3459.
[43] Schild H G, Tirrell D A. Macromolecules, 1992, 18: 4553.
[44] Hu T J, You Y Z, Pan C Y, Wu C. J. Phys. Chem. B, 2002, 26: 6659.
[45] Zheng Q, Pan C Y. Macromolecules, 2005, 16: 6841.
[46] Zheng Q, Pan C Y. Eur. Polym. J., 2006, 4: 807.
[47] Xu J, Luo S Z, Shi W F, Liu S Y. Langmuir, 2006, 3: 989.
[48] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 11: 5974.
[49] van de Manakker F, Vermonden T, van Nostrum C F, Hennink W E. Biomacromolecules, 2009, 12: 3157.
[50] Yancheva E, Paneva D, Maximova V, Mespouille L, Dubois P, Manolova N, Rashkov I. Biomacromolecules, 2007, 3: 976.
[51] Roy D, Knapp J S, Guthrie J T, Perrier S. Biomacromolecules, 2008, 1: 91.
[52] Schacher F, Ulbricht M, Müller A H E. Adv. Funct. Mater., 2009, 7: 1040.
[53] Kikuchi S, Chen Y, Fuchise K, Takada K, Kitakado J, Sato S, Satoh T, Kakuchi T. Polym. Chem., 2014, 16: 4701.
[54] Han S, Hagiwara M, Ishizone T. Macromolecules, 2003, 22: 8312.
[55] Lutz J F, Hoth A. Macromolecules, 2006, 2: 893.
[56] Jonas A M, Glinel K, Oren R, Nysten B, Huck W T S. Macromolecules, 2007, 13: 4403.
[57] Luzon M, Boyer C, Peinado C, Corrales T, Whittaker M, Tao L, Davis T P. J. Polym. Sci. Pol. Chem., 2010, 13: 2783.
[58] Jiang Y, Hu X, Hu J, Liu H, Zhong H, Liu S. Macromolecules, 2011, 22: 8780.
[59] Yuan W, Zhang J, Wei J, Yuan H, Ren J. J. Polym. Sci. Pol. Chem., 2011, 18: 4071.
[60] Yuan W, Zou H, Guo W, Wang A, Ren J. J. Mater. Chem., 2012, 47: 24783.
[61] Dai X H, Jin H, Yuan S S, Pan J M, Wang X H, Yan Y S, Liu D M, Sun L. J. Polym. Res., 2014, 6: 854.
[62] Qiu N, Li Y, Han S, Cui G, Satoh T, Kakuchi T, Duan Q. J. Photoch. Photobio. A, 2014, 2: 38.
[63] Ren T B, Wang A, Yuan W Z, Li L, Feng Y. J. Polym. Sci. Pol. Chem., 2011, 10: 2303.
[64] Sternberg E D, Dolphin D, Bruckner C. Tetrahedron, 1998, 17: 4151.
[65] Nyman E S, Hynninen P H. J. Photoch. Photobio. B, 2004, 1: 1.
[66] Liu Y, Cao X, Luo M, Le Z, Xu W. J. Colloid Interf. Sci., 2009, 2: 244.
[67] Xia Y, Wang J, Xu S, Liao Q, Zhu X, Wang Y, Wang Y. J. Appl. Polym. Sci., 2013, 4: 3249.
[68] Saleh-Ghadimi L, Fathi M, Entezami A A. Int. J. Polym. Mater., 2014, 5: 246.
[69] Zhang W, Zhang W, Cheng Z, Zhou N, Zhu J, Zhang Z, Chen G, Zhu X. Macromolecules, 2011, 9: 3366.
[70] Zhang Y, Liu H, Hu J, Li C, Liu S. Macromol. Rapid Comm., 2009, 11: 941.
[71] Zhou J, Wang L, Ma J, Wang J, Yu H, Xiao A. Eur. Polym. J., 2010, 6: 1288.
[72] Sun X, Jiang G, Wang Y, Xu Y. Colloid Polym. Sci., 2010, 5: 677.
[73] Nottelet B, Vert M, Coudane J. Macromol. Rapid Commun., 2008, 9: 743.
[74] 张文建(Zhang W), 范溦(Fan W), 李敏(Li M), 洪春雁(Hong C), 潘才元(Pan C). 化学学报(Acta Chimica Sinica), 2012, 70(16): 1690.
[75] Miao K, Liu H, Zhao Y. Polym. Chem. 2014, 10: 3335.
[76] Xin Y, Wang H, Liu B W, Yuan J Y. Chinese Journal of Polymer Science, 2015, 33: 36.
[77] Mura S, Nicolas J, Couvreur P. Nat. Mater., 2013, 12: 991.
[1] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[2] 王志鹏, 邓耿, 袁金颖. 机械力响应高分子体系的原理、构建与应用[J]. 化学进展, 2014, 26(07): 1160-1171.
[3] 闫强,隋晓锋,袁金颖. 活性聚合在星形聚合物合成中的应用*[J]. 化学进展, 2008, 20(10): 1562-1571.
[4] 唐新德,范星河,陈小芳,周其凤. 原子转移自由基聚合( ATRP) 在星形聚合物合成中的应用*[J]. 化学进展, 2005, 17(06): 1089-1095.