English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 275-285 DOI: 10.7536/PC141007 前一篇   后一篇

• 综述与评论 •

多功能纳米佐剂在肿瘤疫苗中的应用

张茜, 朱艳红*, 徐辉碧, 杨祥良   

  1. 华中科技大学生命科学与技术学院 国家纳米药物工程技术研究中心 武汉 430074
  • 收稿日期:2014-10-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 朱艳红 E-mail:yhzhu@mail.hust.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2012CB932500)资助

Multifunctional Nanoparticle-Based Adjuvants Used in Cancer Vaccines

Zhang Qian, Zhu Yanhong*, Xu Huibi, Yang Xiangliang   

  1. National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2014-10-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Basic Research Program of China (No. 2012CB932500).

作为一种新的治疗策略,免疫疗法已发展成为继手术、化疗和放疗之后的第四种肿瘤治疗手段,并展现出良好的应用前景。肿瘤免疫治疗的方法种类繁多,其中将纳米技术应用于治疗性的肿瘤疫苗,极大地提高了疫苗的效应。本文介绍了纳米佐剂在肿瘤疫苗中的多种功能,重点介绍了几种纳米粒子的合成方法和疫苗治疗效果,总结了纳米技术用于肿瘤免疫治疗的一些新思路,并对应用纳米技术解决肿瘤疫苗面临的挑战进行了初步的分析和展望。

In recent years immunotherapy has been developed as a promising oncotherapy strategy after surgery, chemotherapy and radiotherapy. Immunotherapy has been widely used in the treatment of cancer including a variety of approaches. It is interesting that the overall efficiency of therapeutic cancer vaccines can be greatly improved when nanoparticle-based adjuvants are used. Significant efforts have been made to synthesize diverse nanoparticles which can fundamentally achieve surface modification and functionalization. In this review, we introduce the role of multifunctional nanoparticle-based adjuvants used in cancer vaccines, particularly focusing on synthesis methods of different types of nanoparticles and therapeutic effects of vaccines. In addition, some new ideas about nanotechnology used in cancer immunotherapy are summarized. Finally, the preliminary analysis and perspective on applying nanotechnology to overcoming the challenges of cancer vaccines are presented.

Contents
1 Introduction
2 Multifunctional nanoparticle-based adjuvants in cancer vaccines
2.1 Protection and controlled release of antigens
2.2 Co-delivery of antigens and immunopotentiators to the same APC
2.3 Immunostimulatory characteristic
2.4 Targeting draining lymph nodes
2.5 Formation of cross-presentation
3 New ideas on nanotechnology used in cancer vaccines
3.1 Self-assembled DNA nanostructures
3.2 Nanoscale artificial antigen presenting cells
3.3 Cancer cell membrane-coated nanoparticles
3.4 Multifunctional nanorods
3.5 Multifunctional Fe3O4-CdSe/ZnS nanoclusters
3.6 Chitosan-coated hollow copper sulfide nanoparticles
4 The influence of administration route on immune response
5 The dilemma of cancer vaccines
6 Outlook

中图分类号: 

()

[1] Couzin-Frankel J. Science, 2013, 342: 1432.
[2] McNutt M. Science, 2013, 342: 1417.
[3] Qasim W, Thrasher A J. British Journal of Haematology, 2014, 166: 818.
[4] Kong Y C, Flynn J C. Frontiers in Immunology, 2014, 5: 206.
[5] Platsoucas C D, Jung W J, Heckel M, Pappas J, Fincke J. Anticancer Res., 2004, 24: 3601.
[6] Saleh F. Curr. Pharm. Design, 2005, 11: 3459.
[7] Gottschalk S, Yu F, Ji M J, Kakarla S, Song X T. PloS One, 2013, 8.
[8] Gao J, Bernatchez C, Sharma P, Radvanyi L G, Hwu P. Trends in Immunology, 2013, 34: 90.
[9] Kalinski P, Urban J, Narang R, Berk E, Wieckowski E, Muthuswamy R. Future Oncol., 2009, 5: 379.
[10] Melero I, Gaudemack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H. Nat. Rev. Clin. Oncol., 2014, 11: 509.
[11] Guo C Q, Manjili M H, Subjeck J R, Sarkar D, Fisher P B, Wang X Y. Advances in Cancer Research, 2013, 119: 421.
[12] Schlom J, Hodge J W, Palena C, Tsang K Y, Jochems C, Greiner J W, Farsaci B, Madan R A, Heery C R, Gulley J L. Adv. Cancer Res., 2014, 121: 67.
[13] Li W A, Mooney D J. Current Opinion in Immunology, 2013, 25: 238.
[14] Silva J M, Videira M, Gaspar R, Preat V, Florindo H F. Journal Controlled Release, 2013, 168: 179.
[15] Scheinberg D A, McDevitt M R, Dao T, Mulvey J J, Feinberg E, Alidori S. Advanced Drug Delivery Reviews, 2013, 65: 2016.
[16] Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J, Yang T, Qiu S, Ma G. Biomaterials, 2014, 35: 6086.
[17] Heo M B, Lim Y T. Biomaterials, 2014, 35: 590.
[18] Smith D M, Simon J K, Baker J R Jr. Nature Reviews Immunology, 2013, 13: 592.
[19] Xu Z, Wang Y, Zhang L, Huang L. ACS Nano, 2014, 8: 3636.
[20] Ballester M, Nembrini C, Dhar N, de Titta A, de Piano C, Pasquier M, Simeoni E, van der Vlies A J, McKinney J D, Hubbell J A, Swartz M A. Vaccine, 2011, 29: 6959.
[21] Heo M B, Cho M Y, Lim Y T. Acta Biomaterialia, 2014, 10: 2169.
[22] Kwong B, Liu H, Irvine D J. Biomaterials, 2011, 32: 5134.
[23] Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Journal of Controlled Release, 2013, 172: 1020.
[24] Pashine A, Valiante N M, Ulmer J B. Nature Medicine, 2005, 11: S63.
[25] Singh M, O'Hagan D. Nat. Biotechnol., 1999, 17: 1075.
[26] Bachmann M F, Jennings G T. Nature Reviews Immunology, 2010, 10: 787.
[27] Oyewumi M O, Kumar A, Cui Z R. Expert. Rev. Vaccines, 2010, 9: 1095.
[28] Rosenthal J A, Chen L, Baker J L, Putnam D, DeLisa M P. Current Opinion in Biotechnology, 2014, 28: 51.
[29] Palucka K, Banchereau J. Nature Reviews Cancer, 2012, 12: 265.
[30] Scheerlinck J P, Greenwood D L. Drug Discovery Today, 2008, 13: 882.
[31] Xiang S D, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram P L, Plebanski M. Methods, 2006, 40: 1.
[32] Foged C, Brodin B, Frokjaer S, Sundblad A. International Journal of Pharmaceutics, 2005, 298: 315.
[33] Yue Z G, Wei W, Lv P P, Yue H, Wang L Y, Su Z G, Ma G H. Biomacromolecules, 2011, 12: 2440.
[34] Zhu M T, Nie G J, Meng H, Xia T, Nel A, Zhao Y L. Acc. Chem. Res., 2013, 46: 622.
[35] Schlosser E, Mueller M, Fischer S, Basta S, Busch D H, Gander B, Groettrup M. Vaccine, 2008, 26: 1626.
[36] De Temmerman M L, Rejman J, Demeester J, Irvine D J, Gander B, De Smedt S C. Drug Discovery Today, 2011, 16: 569.
[37] Huang M H, Huang C Y, Lin S C, Chen J H, Ku C C, Chou A H, Liu S J, Chen H W, Chong P, Leng C H. Microbes and Infection/Institut Pasteur, 2009, 11: 654.
[38] Huang M H, Huang C Y, Lien S P, Siao S Y, Chou A H, Chen H W, Liu S J, Leng C H, Chong P. Pharmaceutical Research, 2009, 26: 1856.
[39] Huang M H, Chou A H, Lien S P, Chen H W, Huang C Y, Chen W W, Chong P, Liu S J, Leng C H. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2009, 90: 832.
[40] Song Y C, Cheng H Y, Leng C H, Chiang S K, Lin C W, Chong P, Huang M H, Liu S J. Journal of Controlled Release, 2014, 173: 158.
[41] Klinman D M. Nature Reviews Immunology, 2004, 4: 249.
[42] Lonsdorf A S, Kuekrek H, Stern B V, Boehm B O, Lehmann P V, Tary-Lehmann M. Journal of Immunology, 2003, 171: 3941.
[43] Heit A, Schmitz F, Haas T, Busch D H, Wagner H. Eur. J. Immunol., 2007, 37: 2063.
[44] Wilson J T, Keller S, Manganiello M J, Cheng C, Lee C C, Opara C, Convertine A, Stayton P S. ACS Nano, 2013, 7: 3912.
[45] Convertine A J, Benoit D S, Duvall C L, Hoffman A S, Stayton P S. Journal of Controlled Release, 2009, 133: 221.
[46] Keller S, Wilson J T, Patilea G I, Kern H B, Convertine A J, Stayton P S. Journal of Controlled Release, 2014.
[47] Standley S M, Mende I, Goh S L, Kwon Y J, Beaudette T T, Engleman E G, Frechet J M J. Bioconjugate Chem., 2007, 18: 77.
[48] Fischer N O, Rasley A, Corzett M, Hwang M H, Hoeprich P D, Blanchette C D. Journal of the American Chemical Society, 2013, 135: 2044.
[49] Broos S, Lundberg K, Akagi T, Kadowaki K, Akashi M, Greiff L, Borrebaeck C A, Lindstedt M. Vaccine, 2010, 28: 5075.
[50] Uto T, Akagi T, Yoshinaga K, Toyama M, Akashi M, Baba M. Biomaterials, 2011, 32: 5206.
[51] Steinman R M. Immunity, 2008, 29: 319.
[52] St John A L, Chan C Y, Staats H F, Leong K W, Abraham S N. Nature Materials, 2012, 11: 250.
[53] Perez-Diez A, Joncker N T, Choi K, Chan W F N, Anderson C C, Lantz O, Matzinger P. Blood, 2007, 109: 5346.
[54] Gilboa E. Nature Reviews Cancer, 2004, 4: 401.
[55] Delamarre L, Pack M, Chang H, Mellman I, Trombetta E S. Science, 2005, 307: 1630.
[56] Bhardwaj N. Trends in Molecular Medicine, 2001, 7: 388.
[57] Amigorena S, Savina A. Current Opinion in Immunology, 2010, 22: 109.
[58] Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. Biomaterials, 2014, 35: 8186.
[59] Yuba E, Harada A, Sakanishi Y, Watarai S, Kono K. Biomaterials, 2013, 34: 3042.
[60] Yuba E, Kono Y, Harada A, Yokoyama S, Arai M, Kubo K, Kono K. Biomaterials, 2013, 34: 5711.
[61] Yuba E, Tajima N, Yoshizaki Y, Harada A, Hayashi H, Kono K. Biomaterials, 2014, 35: 3091.
[62] Sakaguchi N, Kojima C, Harada A, Kono K. Bioconjugate Chem., 2008, 19: 1040.
[63] Murthy N, Robichaud J R, Tirrell D A, Stayton P S, Hoffman A S. Journal of Controlled Release, 1999, 61: 137.
[64] Meyer O, Papahadjopoulos D, Leroux J C. FEBS Lett, 1998, 421: 61.
[65] Yuba E, Harada A, Sakanishi Y, Kono K. Journal of Controlled Release, 2011, 149: 72.
[66] Hirosue S, Kourtis I C, van der Vlies A J, Hubbell J A, Swartz M A. Vaccine, 2010, 28: 7897.
[67] Molino N M, Anderson A K L, Nelson E L, Wang S W. ACS Nano, 2013, 7: 9743.
[68] Ren D, Dalmau M, Randall A, Shindel M M, Baldi P, Wang S W. Advanced Functional Materials, 2012, 22: 3170.
[69] Dalmau M, Lim S R, Wang S W. Nano Letters, 2009, 9: 160.
[70] Dalmau M, Lim S, Wang S W. Biomacromolecules, 2009, 10: 3199.
[71] Park K. Journal of Controlled Release, 2011, 151: 219.
[72] Shen H, Ackerman A L, Cody V, Giodini A, Hinson E R, Cresswell P, Edelson R L, Saltzman W M, Hanlon D J. Immunology, 2006, 117: 78.
[73] Han R, Zhu J, Yang X, Xu H. Journal of Biomedical Materials Research. Part A, 2011, 96: 142.
[74] Panyam J, Zhou W Z, Prabha S, Sahoo S K, Labhasetwar V. FASEB J., 2002, 16.
[75] Davda J, Labhasetwar V. International Journal of Pharmaceutics, 2002, 233: 51.
[76] Hamdy S, Haddadi A, Hung R W, Lavasanifar A. Advanced Drug Delivery Reviews, 2011, 63: 943.
[77] Pack D W, Hoffman A S, Pun S, Stayton P S. Nat. Rev. Drug Discov., 2005, 4: 581.
[78] Boussif O, Lezoualc'h F, Zanta M A, Mergny M D, Scherman D, Demeneix B, Behr J P. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 7297.
[79] Hu Y, Litwin T, Nagaraja A R, Kwong B, Katz J, Watson N, Irvine D J. Nano Letters, 2007, 7: 3056.
[80] Li Y, Wang L X, Yang G, Hao F, Urba W J, Hu H M. Cancer Research, 2008, 68: 6889.
[81] Peynshaert K, Manshian B B, Joris F, Braeckmans K, De Smedt S C, Demeester J, Soenen S J. Chemical Reviews, 2014, 114: 7581.
[82] Li H, Li Y, Jiao J, Hu H M. Nature Nanotechnology, 2011, 6: 645.
[83] Nakamura T, Ono K, Suzuki Y, Moriguchi R, Kogure K, Harashima H. Molecular Pharmaceutics, 2014, 11: 2787.
[84] Zhou S, Hashida Y, Kawakami S, Mihara J, Umeyama T, Imahori H, Murakami T, Yamashita F, Hashida M. International Journal of Pharmaceutics, 2014, 471: 214.
[85] Fadel T R, Li N, Shah S, Look M, Pfefferle L D, Haller G L, Justesen S, Wilson C J, Fahmy T M. Small, 2013, 9: 666.
[86] Fadel T R, Fahmy T M. Trends in Biotechnology, 2014, 32: 198.
[87] Faria P C, Santos L I, Coelho J P, Ribeiro H B, Pimenta M A, Ladeira L O, Gomes D A, Furtado C A, Gazzinelli R T. Nano Letters, 2014.
[88] Lee I H, Kwon H K, An S, Kim D, Kim S, Yu M K, Lee J H, Lee T S, Im S H, Jon S. Angewandte Chemie, 2012, 51: 8800.
[89] Shahbazi M A, Almeida P V, Makila E M, Kaasalainen M H, Salonen J J, Hirvonen J T, Santos H A. Biomaterials, 2014, 35: 7488.
[90] Saljoughian N, Zahedifard F, Doroud D, Doustdari F, Vasei M, Papadopoulou B, Rafati S. Parasite Immunology, 2013, 35: 397.
[91] Chen X, Liu Y, Wang L, Liu Y, Zhang W, Fan B, Ma X, Yuan Q, Ma G, Su Z. Molecular Pharmaceutics, 2014, 11: 1772.
[92] Rothemund P W. Nature, 2006, 440: 297.
[93] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459: 414.
[94] Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D. Nature Materials, 2006, 5: 797.
[95] Li Y, Tseng Y D, Kwon S Y, D'Espaux L, Bunch J S, McEuen P L, Luo D. Nature Materials, 2004, 3: 38.
[96] He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452: 198.
[97] Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. ACS Nano, 2012, 6: 5931.
[98] Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C H. ACS Nano, 2011, 5: 8783.
[99] Oelke M, Krueger C, Giuntoli R L, Schneck J P. Trends in Molecular Medicine, 2005, 11: 412.
[100] Oelke M, Maus M V, Didiano D, June C H, Mackensen A, Schneck J P. Nature Medicine, 2003, 9: 619.
[101] Perica K, Tu A, Richter A, Bieler J G, Edidin M, Schneck J P. ACS Nano, 2014, 8: 2252.
[102] Perica K, De Leon Medero A, Durai M, Chiu Y L, Bieler J G, Sibener L, Niemoller M, Assenmacher M, Richter A, Edidin M, Oelke M, Schneck J. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10: 119.
[103] Eggermont L J, Paulis L E, Tel J, Figdor C G. Trends in Biotechnology, 2014, 32: 456.
[104] Fang R H, Hu C M, Luk B T, Gao W, Copp J A, Tai Y, O'Connor D E, Zhang L. Nano Letters, 2014, 14: 2181.
[105] Son Y J, Kim H, Leong K W, Yoo H S. ACS Nano, 2013, 7: 9771.
[106] Jeong J, Kwon E K, Cheong T C, Park H, Cho N H, Kim W. ACS Applied Materials & Interfaces, 2014, 6: 5297.
[107] Cheng C, Wen Y, Xu X, Gu H. Journal of Materials Chemistry, 2009, 19: 8782.
[108] Ge J, Hu Y, Biasini M, Beyermann W P, Yin Y. Angewandte Chemie, 2007, 46: 4342.
[109] Guo L R, Yan D D, Yang D F, Li Y J, Wang X D, Zalewski O, Yan B F, Lu W. ACS Nano, 2014, 8: 5670.
[110] Lobaina Y, Trujillo H, Garcia D, Gambe A, Chacon Y, Blanco A, Aguilar J C. Viral Immunology, 2010, 23: 521.
[111] Hazebrouck S, Przybylski-Nicaise L, Ah-Leung S, Adel-Patient K, Corthier G, Langella P, Wal J M. Vaccine, 2009, 27: 5800.
[112] Mohanan D, Slutter B, Henriksen-Lacey M, Jiskoot W, Bouwstra J A, Perrie Y, Kundig T M, Gander B, Johansen P. Journal of Controlled Release, 2010, 147: 342.
[113] Fong L, Brockstedt D, Benike C, Wu L, Engleman E G. Journal of Immunology, 2001, 166: 4254.
[114] Vasievich E A, Huang L. Molecular Pharmaceutics, 2011, 8: 635.
[115] Alderton G K, Bordon Y. Nature Reviews Immunology, 2012, 12: 237.
[116] Matera L. Cancer Treatment Reviews, 2010, 36: 131.
[117] Pawelec G. Cancer Immunol. Immun., 2006, 55: 61.
[118] Tabi Z, Man S. Advanced Drug Delivery Reviews, 2006, 58: 902.
[119] Blankenstein T, Coulie P G, Gilboa E, Jaffee E M. Nature Reviews Cancer, 2012, 12: 307.
[120] Finn O J. Nature Reviews Immunology, 2003, 3: 630.
[121] Peek L J, Middaugh C R, Berkland C. Advanced Drug Delivery Reviews, 2008, 60: 915.

[1] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.
[2] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[3] 陈继冰, 袁远英, 徐克成. 抗肿瘤疫苗的研究进展[J]. 化学进展, 2013, 25(09): 1588-1593.
[4] 陈国颂. 探索“甜蜜”疫苗的抗癌之路—基于合成寡糖的癌症免疫治疗*[J]. 化学进展, 2010, 22(09): 1753-1759.