English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 251-266 DOI: 10.7536/PC140914 前一篇   后一篇

• 综述与评论 •

不同种类敏感膜修饰的QCM气体传感器研究现状

王振强1,2, 杨明庆2, 贺军辉*2, 杨巧文1   

  1. 1. 中国矿业大学(北京) 化学与环境工程学院 北京 100083;
    2. 中国科学院理化技术研究所 微纳材料与技术研究中心 功能纳米材料实验室 北京 100190
  • 收稿日期:2014-09-01 修回日期:2014-10-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 贺军辉 E-mail:jhhe@mail.ipc.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21271177),国家重点基础研究发展计划(973)项目(No.2010CB934103)和中国科学院理化技术研究所所长基金资助

Progress of Different Sensing Materials Modified QCM Gas Sensors

Wang Zhenqiang1,2, Yang Mingqing2, He Junhui*2, Yang Qiaowen1   

  1. 1. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
    2. Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2014-09-01 Revised:2014-10-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21271177), the National Basic Research Program of China (973 Program)(No. 2010CB934103) and the Foundation of Director of Technical Institute of Physics and Chemistry, CAS.

石英晶体微天平(quartz crystal microbalance, QCM)是一种对质量变化敏感的器件,具有灵敏度高、成本低廉、操作简单、可实时在线检测等优点,在气体传感领域受到了广泛关注。敏感材料是石英晶体微天平气体传感器的关键组成部分,本文综述了不同敏感材料包括有机聚合物、超分子化合物、离子液体和分子液体以及近年来备受关注的纳米材料修饰的QCM对特定气体传感检测的研究现状,详细介绍了纳米材料为敏感膜的QCM气体传感器对不同气体传感检测的研究现状及相关敏感机理。最后,在国内外研究现状的基础上,展望了敏感材料的发展前景。QCM作为一种成本低廉、操作方便、测量精度高的气体传感检测器件,将会有更加广阔的应用前景。

Quartz crystal microbalance (QCM) is a mass-sensitive device, and has been attracting intensive attention in the field of gas sensor because of its many advantages such as high sensitivity, low cost, easy installation and inherent ability to monitor analytes in real time. Sensing material is a key issue for the range of application of QCM sensors. This paper reviews the current research status of sensing materials for specific gases, including polymers, supermolecules, ionic liquids, molecular liquids and nanomaterials. The current status and sensing mechanisms of QCM sensors using nanomaterials as sensing layer are introduced in detail. On the basis of the research status, a prospect is given of sensing materials. As a low-cost, easy operation, high-accuracy gas detection device, QCM would be more widely applied in the future.

Contents
1 Introduction
2 Polymers functionalized QCM sensors
2.1 Humidity detection
2.2 Agent stimulant detection
2.3 VOCs detection
3 Supermolecules functionalized QCM sensors
3.1 Inorganic gas pollutants detection
3.2 VOCs detection
4 Ionic liquids and molecular liquids functionalized QCM sensors
4.1 VOCs detection
4.2 Non-volatility compounds detection
5 Nanomaterials functionalized QCM sensors
5.1 Humidity detection
5.2 Inorganic gas pollutants detection
5.3 VOCs detection
5.4 HCN and agent stimulant detection
6 Conclusion and outlook

中图分类号: 

()

[1] Kida T, Fujiyama S, Suematsu K, Yuasa M, Shimanoe K. J. Phys. Chem. C, 2013, 117(34): 17574.
[2] Chen Y J, Gao X M, Di X P, Ouyang Q Y, Gao P, Qi L H, Li C Y, Zhu C L. ACS Appl. Mater. Interfaces, 2013, 5(8): 3267.
[3] Wang H, Rogach A L. Chem. Mater., 2014, 26(1): 123.
[4] Su J, Zou X X, Zou Y C, Li G D, Wang P P, Chen J S. Inorg. Chem., 2013, 52(10): 5924.
[5] Moon H G, Shim Y S, Su D, Park H H, Yoon S J, Jang H W. J. Phys. Chem. C, 2011, 115(20): 9993.
[6] Balázsi C, Sedlácková K, Llobet E, Ionescu R. Sens. Actuators B: Chem., 2008, 133(1): 151.
[7] Blaszczyk-Lezak I, Aparicio F J, Borras A, Barranco A, Alvarez-Herrero A, Fernandez-Rodriguez M, González-Elipe A R. J. Phys. Chem. C, 2009, 113(1): 431.
[8] Aparicio F J, Blaszczyk-Lezak I, Sánchez-Valencia J R, Alcaire M, González J C, Serra C, González-Elipe A R, Barranco A. J. Phys. Chem. C, 2012, 116(15): 8731.
[9] Chitara B, Late D J, Krupanidhi S B, Rao C N R. Solid State Commun., 2010, 150(41/42): 2053.
[10] Gong J, Li Y, Hu Z, Zhou Z, Deng Y. J. Phys. Chem. C, 2010, 114(21): 9970.
[11] Tarwal N L, Rajgure A V, Patil J Y, Khandekar M S, Suryavanshi S S, Patil P S, Gang M G, Kim J H, Jang J H. J. Mater. Sci., 2013, 48(20): 7274.
[12] Shan H, Liu C, Liu L, Zhang J, Li H, Liu Z, Zhang X, Bo X, Chi X. ACS Appl. Mater. Interfaces, 2013, 5(13): 6376.
[13] Carey W P, Beebe K R, Kowalski B R. Anal. Chem., 1987, 59(11): 1529.
[14] Curie P, Curie J. Bulletin. Soc. Min. de France, 1880, 3: 90.
[15] Lippmann G. Ann. Chem. Phys., 1881, 24: 145.
[16] Sauerbrey G. Zeitschrift fiir Physik, 1959, 155: 206.
[17] Sakai Y, Sadaoka Y, Matsuguchi M. Sens. Actuators B:Chem., 1996, 35: 85.
[18] Yoo H Y, Bruckenstein S. Anal. Chim. Acta, 2013, 785: 98.
[19] Zuo B L, Li W, Zhang T, Zhang H X, Liu G S. Afr. J. Chem., 2007, 60: 118.
[20] Zhang Z, Fan J, Yu J, Zheng S, Chen W, Li H, Wang Z, Zhang W. ACS Appl. Mater. Interfaces, 2012, 4(2): 944.
[21] Du X, Wang Z, Huang J, Tao S, Tang X, Jiang Y. J. Mater. Sci., 2009, 44(21): 5872.
[22] Das R, Biswas S, Bandyopadhyay R, Pramanik P. Sens. Actuators B: Chem., 2013, 185: 293.
[23] Si P, Mortensen J, Komolov A, Denborg J, Moller P J. Anal. Chim. Acta, 2007, 597(2): 223.
[24] Fan X, Du B. Sens. Actuators B: Chem., 2011, 160(1): 724.
[25] Fan X, Du B. Sens. Actuators B: Chem., 2012, 166/167: 753.
[26] Mumyakmaz B, Özmen A, Ebeo D? lu M A, Ta?alt?n C, Gürol I. Sens. Actuators B: Chem., 2010, 147(1): 277.
[27] Andreeva N, Ishizaki T, Baroch P, Saito N. Sens. Actuators B: Chem., 2012, 164(1): 15.
[28] Bachar N, Liberman L, Muallem F, Feng X, Mullen K, Haick H. ACS Appl. Mater. Interfaces, 2013, 5(22): 11641.
[29] Palaniappan A, Moochhala S, Tay F E H, Su X, Phua N C L. Sens. Actuators B: Chem., 2008, 129(1): 184.
[30] Chen W Q, Zeng H M, Zheng R S, Zhang S W, He J. Chin. J. Cancer Res., 2012, 24(1): 1.
[31] Chen W, Zheng R, Zhang S, Zou X, Zhao P, He J. Thoracic Cancer, 2013, 4(2): 102.
[32] Bray F, Ren J S, Masuyer E, Ferlay J. Int. J. Cancer, 2013, 132(5): 1133.
[33] Jemal A, Siegel R, Xu J, Ward E. CA Cancer J. Clin., 2010, 60: 277.
[34] Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. CA Cancer J. Clin., 2011, 61(2): 69.
[35] Broet P, Moreau T. J. Clin. Bioinforma., 2012, 2(14): 2.
[36] Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y, Hasegawa M, Yamanda T, Kubo K, Hanamura K, Asakura K. Lancet, 1998, 351(9111): 1242.
[37] Foy M, Yip R, Chen X, Kimmel M, Gorlova O Y, Henschke C I. Cancer, 2011, 117(12): 2703.
[38] De Ruysscher D, Sharifi H, Defraene G, Kerns S L, Christiaens M, de Ruyck K, Peeters S, Vansteenkiste J, Jeraj R, van Den Heuvel F, van Elmpt W. Acta Oncologica, 2013, 52(7): 1405.
[39] Sanz-Santos J, Andreo F, Sánchez D, Castellá E, Llatjós M, Bechini J, Guasch I, de Castro P L, Roca J, Parra I, Monsó E. Archivos de Bronconeumología, 2010, 46(12): 640.
[40] Lam B, Lam S Y, Wong M P, Ooi C G, Fong D Y, Lam D C, Lai A Y, Tam C M. Pang C B, Ip M S, Lam W K. Lung Cancer, 2009, 64(3): 289.
[41] Sato M, Sakurada A, Sagawa M, Minowa M. Lung Cancer, 2001, 32: 247.
[42] Phillips M, Gleeson K, Hughes J M B, Greenberg J, Cataneo R N, Baker L, McVay W P. Lancet, 1999, 353(9168): 1930.
[43] Song G, Qin T, Liu H, Xu G B, Pan Y Y, Xiong F X, Gu K S, Sun G P, Chen Z D. Lung Cancer, 2010, 67(2): 227.
[44] Phillips M, Byrnes R, Cataneo R N, Chaturvedi A, Kaplan P D, Libardoni M, Mehta V, Mundada M, Patel U, Ramakrishna N, Schiff P B, Zhang X. J. Breath Res., 2013, 7(3): 036002.
[45] Kim K H, Jahan S A, Kabir E. Trends Anal. Chem., 2012, 33: 1.
[46] Chatterjee S, Castro M, Feller J F. J. Phys. Chem. B, 2013, 1(36): 4563.
[47] Hou C J, Lei J C, Huo D Q, Song K, Li J J, Luo X G, Yang M, Fa H B. Anal. Lett., 2013, 46(13): 2048.
[48] Broza Y Y, Kremer R, Tisch U, Gevorkyan A, Shiban A, Best L A, Haick H. Nanomedicine: NBM, 2013, 9(1): 15.
[49] Barash O, Peled N, Tisch U, Bunn P A, Hirsch F R, Haick H. Nanomedicine: NBM, 2012, 8(5): 580.
[50] Zilberman Y, Tisch U, Pisula W, Feng X, Mullen K, Haick H. Langmuir, 2009, 25(9): 5411.
[51] Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi-Agrò A, D’Amico A. Biosens. Bioelectron., 2003, 18(10): 1209.
[52] D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, di Natale C. Lung Cancer, 2010, 68(2): 170.
[53] Bartolazzi A, Santonico M, Pennazza G, Martinelli E, Paolesse R, D’Amico A, di Natale C. Sens. Actuators B: Chem., 2010, 146(2): 483.
[54] Pennazza G, Santonico M, Martinelli E, Paolesse R, Tamburrelli V, Cristina S, D’Amico A, di Natale C, Bartolazzi A. Sens. Actuators B: Chem., 2011, 154(2): 288.
[55] Latif U, Rohrer A, Lieberzeit P A, Dickert F L. Anal. Bioanal. Chem., 2011, 400(8): 2457.
[56] Ndiaye A, Bonnet P, Pauly A, Dubois M, Brunet J, Varenne C, Guerin K, Lauron B. J. Phys. Chem. C, 2013, 117(39): 20217.
[57] Xu X, Cang H, Li, C, Zhao Z K, Li H. Talanta, 2009, 78(3): 711.
[58] Wyszynski B, Kim D, Nakamoto T. Sens. Actuators B: Chem., 2013, 179: 81.
[59] Rehman A, Hamilton A, Chung A, Baker G A, Wang Z, Zeng X. Anal. Chem., 2011, 83(20): 7823.
[60] Bashouti M Y, de la Zerda A S, Geva D, Haick H. J. Phys. Chem. C, 2014, 118(4): 1903.
[61] Han J W, Kim B, Li J, Meyyappan M. J. Phys. Chem. C, 2013, 2012, 116(41): 22094.
[62] Zhu Y, Li H, Xu J, Yuan H, Wang J, Li X. Cryst. Eng. Comm., 2011, 13(2): 402.
[63] Lazarowich R J, Taborek P, Yoo B Y, Myung N V. J. Appl. Phys., 2007, 101(10): 104909.
[64] Zhou X, Zhang J, Jiang T, Wang X, Zhu Z. Sensor Actuat A: Phys., 2007, 135(1): 209.
[65] Erol A, Okur S, Ya D? murcukardešN, Ar?kan M Ç. Sens. Actuators B: Chem., 2011, 152(1): 115.
[66] Yao Y, Chen X, Li X, Chen X, Li N. Sens. Actuators B: Chem., 2014, 191: 779.
[67] Hu J, Zhu F, Zhang J, Gong H. Sens. Actuators B: Chem., 2003, 93(1/3): 175.
[68] Zhang J, Hu J, Zhu Z Q, Gong H, O’Shea S. J. Colloids Surf. A, 2004, 236(1/3): 23.
[69] Matsuguchi M, Kadowaki Y. Sens. Actuators B: Chem., 2008, 130(2): 842.
[70] Matsuguchi M, Harada N, Omori S. Sens. Actuators B: Chem., 2014, 190: 446.
[71] Kosaki Y, Izawa H, Ishihara S, Kawakami K, Sumita M, Tateyama Y, Ji Q, Krishnan V, Hishita S, Yamauchi Y, Hill J P, Vinu A, Shiratori S. Ariga K. ACS Appl. Mater. Interfaces, 2013, 5(8): 2930.
[72] Zhu Y, Li H, Zheng Q, Xu J, Li X. Langmuir, 2012, 28(20): 7843.
[73] Van Quy N, Hung T M, Thong T Q, Tuan L A, Huy T Q, Hoa N D. Current Appl. Phys., 2013, 13(8): 1581.
[74] Yang M, He J, Hu X, Yan C, Cheng Z. Environ. Sci. Technol., 2011, 45(14): 6088.
[75] Yang M, He J, Hu X, Yan C, Cheng Z. Analyst, 2013, 138(6): 1758.
[76] Ji X, Yao W, Peng J, Ren N, Zhou J, Huang Y. Sens. Actuators B: Chem., 2012, 166/167: 50.
[77] Zhao Y, He J, Yang M, Gao S, Zuo G, Yan C, Cheng Z. Anal. Chim. Acta, 2009, 654(2): 120.
[78] Zhao Y, Chen H, Wang X, He J, Yu Y, He H. Anal. Chim. Acta, 2010, 675(1): 36.
[79] Zhao Y, Du X, Wang X, He J, Yu Y, He H. Sens. Actuators B: Chem., 2010, 151(1): 205.

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[8] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[9] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[10] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[11] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[14] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[15] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.