English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1987-1996 DOI: 10.7536/PC140619 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

单分子荧光技术在端粒和端粒酶研究中的应用

范霄, 李艳艳, 刘迎亚, 曹昌盛, 李海涛*   

  1. 江苏师范大学化学化工学院 徐州 221116
  • 收稿日期:2014-06-01 修回日期:2014-08-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 李海涛 E-mail:haitao@jsnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21375051)资助

Application of Single Molecule Fluorescence Techniques on Telomere and Telomerase

Fan Xiao, Li Yanyan, Liu Yingya, Cao Changsheng, Li Haitao*   

  1. School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • Received:2014-06-01 Revised:2014-08-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21375051)

端粒酶是一种逆转录酶,能够维持端粒的长度和活性,从而防止染色体末端降解或融合,维持染色体稳定.大多数正常体细胞中端粒酶活性被抑制,端粒长度随着细胞持续分裂逐渐缩短;而在大多数癌细胞中端粒酶都表现出活性,端粒的长度和结构得以维持,癌细胞永生化.由此可见端粒酶是一种重要的癌症标志物,可作为癌症诊断依据和治疗靶点.然而,端粒酶结构复杂且数量少,难以从微量全酶复合物中分离出足量端粒酶用于分析,这为传统方法研究端粒酶带来极大困难.随着单分子荧光技术的发展,荧光共振能量转移、荧光双色同步响应等技术已被应用于端粒酶的研究,打破了传统方法检测端粒酶的各种局限.本文主要综述了单分子荧光技术的发展,端粒、端粒酶与癌症及其研究进展,并对单分子荧光技术在端粒酶研究中的应用及其发展趋势进行了总结和展望.

The telomerase ribonucleoprotein is a reverse transcriptase that plays a critical role in the maintenance of telomere length by synthesizing telomeric DNA repeats using its instinct RNA as the template and thus protects chromosome ends from degradation and fusion. Most normal somatic cells do not express detectable telomerase activity and telomeres shorten progressively with each cell division, while in almost all kinds of cancer cells human telomerase exhibits high activity, suggesting that there is a direct association between telomerase activity and various diseases including cancer and age-related diseases, and that telomerase could be used both as a diagnostic biomarker for the early detection of human cancer and as a potential target for anti-cancer therapy. However, fully understanding the biochemical action of human telomerase is presently a huge challenge since it is a very big complex. Moreover, it is remarkably difficult to get enough amount of heloenzyme for traditional enzyme analysis. Novel and advanced methods therefore should be employed to assay human telomerase and understand enzymatication. Single molecule techniques such as single-molecule fluorescence resonance energy transfer (smFRET) technique and two-color coincidence detection (TCCD) not only can detect dynamic of individual molecule and flexibility of enzyme catalysis, but also can check very little amount of samples in solution or on surface, which can not be performed by bulk experiment. In this review, we summarize the progress and prospect of telomerase research and describe several latest single-molecule methods applied to assaying telomerase structure, function, activity and dynamics.

Contents
1 Introduction
2 Single molecule fluorescence technique
2.1 Development of single molecule fluorescence techniques
2.2 Classification of single molecule fluorescence techniques
2.3 Common single molecule fluorescence techniques
3 Telomere, telomerase and cancer
3.1 Structure and function of telomere and telomerase
3.2 Relationship between telomere, telomerase and cancer
3.3 Telomerase as a diagnostic biomarker and therapeutic target for cancer
4 Single molecule fluorescence studies of human telomerase
4.1 Common methods for telomerase detection
4.2 Single molecule fluorescence techniques applied to telomerase detection
5 Conclusion

中图分类号: 

()

[1] Weiss S. Science, 1999, 283(5408): 1676.
[2] Moerner W E, Orrit M. Science, 1999, 283(5408): 1670.
[3] Erie D A, Weninger K R. DNA Repair, 2014, 20: 71.
[4] Miacco E J, Jiang J, Cash D D, Feigon J. Current Opinion is Structural Biology, 2014, 24: 115.
[5] Sharma N, Shrivastav A, Shrivastav B R. International Journal of Biomedical and Advance Research, 2013, 4(8): 494.
[6] Hengesbach M, Akiyama B M, Stone M D. Current Opinion in Chemical Biology, 2011, 15(6): 845.
[7] 冉诗勇(Ran S Y), 孙博(Sun B), 李明(Li M). 物理(Physics), 2007, 36(03): 228.
[8] Li H, Ying L, Ren X, Balasubramanian S, Klenerman D. Biochemical Society Transactions, 2004, 32(5): 753.
[9] Hirschfeld T. Applied Optics, 1976, 15(12): 2965.
[10] Orrit M, Bernard J. Physical Review Letters, 1990, 65(21):2716.
[11] Dovichi N J, Martin J C, Jett J H, Keller R A. Science, 1983, 219(4586): 845.
[12] Nguyen D C, Keller R A, Trkula M. Journal of the Optical Society of America B, 1987, 4(2): 138.
[13] Brooks S E, Seitzinger N K, Davis L M, Keller R A. Chemical Physics Letters, 1990, 174(6): 553.
[14] Betzig E, Chichester R J. Science, 1993, 262(5138): 1422.
[15] Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S. Proceedings of the National Academy of Sciences, 1996, 93(13): 6264.
[16] Li H, Ying L, Green J J, Balasubramanian S, Klenerman D. Analytical Chemistry, 2003, 75(7): 1664.
[17] Gell C, Brockwell D, Smith A. Handbook of Single Molecule Fluorescence Spectroscopy. NY: Oxford University Press, 2006.
[18] Li H, Ren X, Ying L, Balasubramanian S, Klenerman D. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40): 14425.
[19] Edman L, Mets U, Rigler R. Proceedings of the National Academy of Sciences, 1996, 93(13): 6710.
[20] Eggeling C, Fries J R, Brand L, Günther R, Seidel C A. Proceedings of the National Academy of Sciences, 1998, 95(4): 1556.
[21] Neuweiler H, Schulz A, Böhmer M, Enderlein J, Sauer M J. Journal of the American Chemical Society, 2003, 125(18): 5324.
[22] Grunwell J R, Glass J L, Lacoste T D, Deniz A A, Chemla D S, Schultz P G. Journal of the American Chemical Society, 2001, 123(18), 4295.
[23] Orte A, Clarke R, Balasubramanian S, Klenerman D. Analytical Chemistry, 2006, 78(22): 7707.
[24] Ren X, Gavory G, Li H, Ying L, Balasubramanian S, Klenerman D. Nucleic Acids Research, 2003, 31(22): 6509.
[25] Horrocks M H, Li H, Shim J, Ranasinghe R T, Clarke R W, Huck W T, Abell C, Klenerman D. Analytical Chemistry, 2011, 84(1): 179.
[26] Ha T. Methods, 2001, 25(1): 78.
[27] Kaláb P, Soderholm J. Methods, 2010, 51(2): 220.
[28] Sugawa M, Arai Y, Iwane A H, Ishii Y, Yanagida T. Biosystems, 2007, 88(3): 243.
[29] Roy R, Hohng S, Ha T. Nature Methods, 2008, 5(6): 507.
[30] McLoughlin S Y, Kastantin M, Schwartz D K, Kaar J L. Proceedings of the National Academy of Sciences, 2013, 110(48): 19396.
[31] Dahan M, Deniz A A, Ha T, Chemla D S, Schultz P G, Weiss S. Chemical Physics, 1999, 247(1): 85.
[32] Orte A, Clarke R, Klenerman D. Biochemical Society Transactions, 2010, 38(4): 914.
[33] Huffman K E, Levene S D, Tesmer V M, Shay J W, Wright W E. Journal of Biological Chemistry, 2000, 275(26): 19719.
[34] 朱军(Zhu J), 丁建强(Ding J Q), 冯云(Feng Y). 中国医药科学(China Medicine and Pharmacy), 2012, 2(7): 59.
[35] Greider C W, Blackburn E H. Cell, 1985, 43(2): 405.
[36] 陈耿(Chen G), 周建新(Zhou J X). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 1999, 26(5): 419.
[37] Greider C W, Blackburn E H. Nature, 1989, 337(6205): 331.
[38] Lingner J, Hughes T R, Shevchenko A, Mann M, Lundblad V, Cech T R. Science, 1997, 276(5312): 561.
[39] Collins K. Nature Reviews Molecular Cell Biology, 2006, 7(7): 484.
[40] Ren X, Li H, Clarke R W, Alves D A, Ying L, Klenerman D, Balasubramanian S. Journal of the American Chemical Society, 2006, 128(15): 4992.
[41] Chen J L, Blasco M A, Greider C W. Cell, 2000, 100(5): 503.
[42] Bachand F, Triki I, Autexier C. Nucleic Acids Research, 2001, 29(16): 3385.
[43] Keppler B R, Jarstfer M B. Analytical Biochemistry, 2006, 353(1): 75.
[44] Shay J W, Gazdar A F. Journal of Clinical Pathology, 1997, 50(2): 106.
[45] Deng W G, Jayachandran G, Wu G, Xu K, Roth J A, Ji L. Journal of Biological Chemistry, 2007, 282(36): 26460.
[46] Xu Y, He K, Goldkorn A. Clin. Adv. Hematol Oncol., 2011, 9(6): 442.
[47] Gorham H, Yoshida K, Sugino T, Marsh G, Manek S, Charnock M, Tarin D, Goodison S. Journal of Clinical Pathology, 1997, 50(6): 501.
[48] Marian C O, Wright W E, Shay J W. International Journal of Cancer, 2010, 127(2): 321.
[49] Roig A I, Wright W E, Shay J W. Current Colorectal Cancer Reports, 2009, 5(4): 203.
[50] Morin G B. Cell, 1989, 59(3): 521.
[51] Kim N W, Piatyszek M A, Prowse K R, Harley C B, West M D, Ho P L, Coviello G M, Wright W E, Weinrich S L, Shay J W. Science, 1994, 266(5193): 2011.
[52] Zhou X, Xing D. Chemical Society Reviews, 2012, 41(13): 4643.
[53] Kim N W, Wu F. Nucleic Acids Research, 1997, 25(13): 2595.
[54] Wu Y Y, Hruszkewycz A M, Delgado R M, Yang A, Vortmeyer A O, Moon Y W, Weil R J, Zhuang Z P, Remaley A T. Clinica Chimica Acta, 2000, 293(1): 199.
[55] Krupp G, Kühne K, Tamm S, Klapper W, Heidorn K, Rott A, Parwaresch R. Nucleic Acids Research, 1997, 25(4): 919.
[56] Wright W E, Shay J W, Piatyszek M A. Nucleic Acids Research, 1995, 23(18): 3794.
[57] Savoysky E, Akamatsu K, Tsuchiya M, Yamazaki T. Nucleic Acids Research, 1996, 24(6): 1175.
[58] Ying L, Green J J, Li H, Klenerman D, Balasubramanian S. Proceedings of the National Academy of Sciences, 2003, 100(25): 14629.
[59] Gavory G, Symmons M F, Krishnan G Y, Klenerman D, Balasubramanian S. Biochemistry, 2006, 45(44): 13304.
[60] Wu J Y, Stone M D, Zhuang X. Nucleic Acids Research, 2010, 38(3): e16.
[61] Hengesbach M, Kim N K, Feigon J, Stone M D. Angew. Chem., 2012, 124: 5978
[62] Yeoman J A, Orte A, Ashbridge B, Klenerman D, Balasubramanian S. Journal of the American Chemical Society, 2010, 132(9): 2852.
[63] Alves D, Li H, Codrington R, Orte A, Ren X, Klenerman D, Balasubramanian S. Nature Chemical Biology, 2008, 4(5): 287.

[1] 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 基于共轭聚合物的核酸生物传感器的应用[J]. 化学进展, 2015, 27(12): 1799-1807.
[2] 刘玲芝,刘志洪,何治柯,蔡汝秀. 量子点:FRET的新发展[J]. 化学进展, 2006, 18(0203): 337-343.